即插即用篇 | YOLOv8 引入 空间和通道协同注意力模块 SCSA

在这里插入图片描述
在这里插入图片描述

论文名称:SCSA: Exploring the Synergistic Effects Between Spatial and Channel Attention
论文地址:https://arxiv.org/pdf/2407.05128
代码地址:https://github.com/HZAI-ZJNU/SCSA


通道和空间注意力在提取特征依赖关系和空间结构关系方面,为各种下游视觉任务带来了显著的改进。虽然它们的结合更有利于利用各自的优势,但通道和空间注意力之间的协同效应尚未得到充分探索,未能充分发挥多语义信息在特征引导和减轻语义差异方面的协同潜力。我们的研究试图揭示空间注意力和通道注意力在多个语义层次之间的协同关系,提出了一种新颖的空间和通道协同注意力模块(SCSA&#x

### YOLOv11中的SCSA注意力机制YOLOv11中,引入空间通道协同注意力模块(Spatial and Channel Synergistic Attention, SCSA)旨在提升模型对于目标检测任务的理解能力。该模块通过融合空间维度上的特征图以及不同通道之间的关系来增强网络的表现力。 #### 实现方法 为了实现这一功能,在卷积层之后添加了一个专门设计用于捕捉这些复杂模式的新组件——即SCSA单元。此过程涉及以下几个方面: - **空间注意力计算**:通过对输入特征映射应用一系列操作以获得表示各位置重要性的权重矩阵W_spatial。这通常涉及到先经过平均池化与最大池化的组合处理得到两个二维张量H_avg H_max ,再将其连接起来并通过一个小型全连接神经网络转换成最终的空间注意力建议得分[^1]。 ```python import torch.nn as nn class SpatialAttention(nn.Module): def __init__(self): super(SpatialAttention, self).__init__() self.conv = nn.Conv2d(2, 1, kernel_size=7, padding=3) def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) out = torch.cat([avg_out, max_out], dim=1) out = self.conv(out) return torch.sigmoid(out) ``` - **通道注意力计算**:同样地,针对每一个单独的channel也执行类似的流程,只不过这次关注的是如何衡量各个channels的重要性程度并据此调整其激活强度。这里采用全局均值/最大池化的方式获取每条路径下的响应向量C_avg 及 C_max ,随后送入一个多层感知器MLP进行变换从而得出期望的结果w_channel。 ```python class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=8): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) ``` 最后一步则是将上述两部分所得结果相乘并与原始feature map相结合形成新的输出作为后续阶段的基础数据源。 ```python class SCSABlock(nn.Module): def __init__(self, channel_in): super(SCSABlock, self).__init__() self.channel_attention = ChannelAttention(channel_in) self.spatial_attention = SpatialAttention() def forward(self, x): ca = self.channel_attention(x) * x sa = self.spatial_attention(ca) * ca return sa ``` 这种结构不仅能够有效地提高模型的学习效率而且有助于改善整体性能表现。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

迪菲赫尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值