1.数据源:阿里云的天池数据集
2.客户粘性,指的是客户对于品牌或产品的忠诚、信任与良性体验等结合起来形成的依赖感和再消费期望值。依赖感越强,客户粘性越高;再消费期望值越高,客户粘性越高。
3.数据分析经过的5个步骤:数据获取-数据清洗(缺失值处理、一致性处理)-数据理解-构建模型-数据可视化。
4.研究因素之间的影响关系(Excel数据透视表,R语言–IM函数构建线性回归模型)
5.基于MySQL消费金融用户评级模式的数据分析:
https://zhuanlan.zhihu.com/p/61702772
1)2019年3月初,全国政协委员、证监会前主席肖钢带来了“支持发展互联网小贷公司满足普惠消费信贷需求”的提案。肖钢表示,中国消费信贷发展空间巨大,特别是面向广大群众、与日常消费息息相关的小额、普惠型消费信贷市场。
2)通过分析拍拍贷的用户数据可以得出,客户的还款情况与其申请信息和认证信息、评级关系等各方面的相关性。
3)分析步骤:
a.数据集获取
b.数据字段解读
c.将数据导入mysql数据库
d.数据清洗(空值核查,删除重复值)
e.构建模型及数据可视化展示
4)结论:综上SQL分析/excel分析及图表可视化展示,用户的年龄(划分年龄段,以柱状图的形式展现)、初始评级(饼状图)与逾期还款有较大程度的联系,后期可以在这些方面加强监管。
6.python-svm分类项目实战
数据分析案例笔记1
最新推荐文章于 2024-09-02 22:01:16 发布
本文探讨了多个数据分析案例,包括阿里云天池数据集中的客户粘性分析,通过5步数据分析流程深入理解数据,利用Excel和R进行线性回归建模,结合MySQL分析消费金融用户评级模式。同时,介绍了Python-SVM分类项目实战,用于乳腺癌诊断,强调数据质量评估和特征选择的重要性。此外,还分析了LendingClub的贷款业务,提出了针对不同客户群体和信用等级的评审建议,以及利用Python对淘宝用户行为的深入分析,揭示了用户活跃时间、购买率和购买偏好等关键洞察。
摘要由CSDN通过智能技术生成