数据结构---最大子序列算法(不同时间复杂度 C语言)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_43731369/article/details/88381963

时间复杂度

一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O(f(n)),称O(f(n))为算法的渐进时间复杂度(O是数量级的符号 ),简称时间复杂度。


时间复杂度确实有些难理解,不妨结合求最大子序列的程序具体理解一下

最大自序列的算法

在这里插入图片描述

#include<stdio.h>
#define N 10                              //N是序列的的个数
int num[N]={5,6,7,8,-9,1,2,3,4,0};
void main(){
    int thissum,maxsum = 0;
    int i,j,k;
    for(i=0;i<N;i++){
        for(j=i;j<N;j++){
            thissum=0;
            for(k=i;k<=j;k++)
                thissum += num[k];
            if(thissum>maxsum)
                maxsum = thissum;
        }
    }
    printf("%d",maxsum);
}

三重循环,复杂度是n的三次方
在这里插入图片描述

#include<stdio.h>
#define N 10                              //N是序列的的个数
int num[N]={5,6,7,8,-9,1,2,3,4,0};
void main(){
    int thissum,maxsum = 0;
    int i,j;
    for(i=0;i<N;i++){
        thissum = 0;
        for(j=i;j<N;j++){
                thissum += num[j];
            if(thissum>maxsum)
                maxsum = thissum;
        }
    }
    printf("%d",maxsum);
}

有一定优化,只用了两次循环,复杂度是n的两次方
在这里插入图片描述

int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/
 
    int LeftBorderSum, RightBorderSum;
    int center, i;
 
    if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
        if( List[left] > 0 )  return List[left];
        else return 0;
    }
 
    /* 下面是"分"的过程 */
    center = ( left + right ) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer( List, left, center );
    MaxRightSum = DivideAndConquer( List, center+1, right );
 
    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0; LeftBorderSum = 0;
    for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
        LeftBorderSum += List[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */
 
    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
        RightBorderSum += List[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */
 
    /* 下面返回"治"的结果 */
    return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}
 
int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer( List, 0, N-1 );
}

这是从网上找到的 ,相对复杂,logn与二分法相联系
一般n的平方的复杂度 通过二分方法 都可以降到nlogn
在这里插入图片描述

#include<stdio.h>
#define N 10                              //N是序列的的个数
int num[N]={5,6,7,8,-9,1,2,3,4,0};
void main(){
    int thissum=0,maxsum = 0;
    int i;
    for(i=0;i<N;i++){
            thissum+=num[i];
            if(thissum>maxsum)
                maxsum = thissum;
            else if(thissum<0)
                thissum=0;
    }
    printf("%d",maxsum);
}

首先要知道最大子序列的两端的元素(或者连续子序列,整个子序列可以看作是一个元素)是不可能为负的,因为如果为负,总是会有通过将这个负的元素(或连续子序列)去掉而使子序列和更大

展开阅读全文

没有更多推荐了,返回首页