Robert+SimCLR+PGD实现文本分类

本文介绍了如何结合SimCLR的对比学习和PGD对抗训练提升文本分类模型的准确率。通过数据增强、对抗训练以及SimCLR的对比学习方法,增强了模型的鲁棒性和泛化能力。在训练过程中,利用PyTorch Lightning实现模型和优化器,并应用早停策略防止过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用SimCLR思想结合对抗训练的思想最大程度提升模型文本分类的准确率方面,你可以尝试以下方法:

  1. 对数据集进行增强,例如随机切割、随机旋转、随机缩放等,以增加模型的鲁棒性。
  2. 使用对抗训练来提高模型的鲁棒性。例如,可以使用FGSM或PGD算法来生成对抗样本,并将其添加到训练数据集中。
  3. 使用SimCLR思想来提高模型的泛化能力。例如,可以使用对比学习来训练模型,使模型学会从相似的样本中提取更好的特征。

目录

一、导入相关模块

二、加载数据集

三、定义模型函数

四、定义对抗训练函数

五、模型训练与评估

六、结合SimCLR


一、导入相关模块

import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import RobertaTokenizer, RobertaModel
from torch.optim.lr_scheduler import LambdaLR
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
fro
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr.Petrichor

作者逐个题目分析的噢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值