在使用SimCLR思想结合对抗训练的思想最大程度提升模型文本分类的准确率方面,你可以尝试以下方法:
- 对数据集进行增强,例如随机切割、随机旋转、随机缩放等,以增加模型的鲁棒性。
- 使用对抗训练来提高模型的鲁棒性。例如,可以使用FGSM或PGD算法来生成对抗样本,并将其添加到训练数据集中。
- 使用SimCLR思想来提高模型的泛化能力。例如,可以使用对比学习来训练模型,使模型学会从相似的样本中提取更好的特征。
目录
一、导入相关模块
import os
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from transformers import RobertaTokenizer, RobertaModel
from torch.optim.lr_scheduler import LambdaLR
import pytorch_lightning as pl
from pytorch_lightning.callbacks import EarlyStopping
fro