浅谈数据增强

本文探讨了数据增强在提高模型泛化能力和鲁棒性中的作用,特别是针对Roberta在SST-2数据集上的文本二分类任务。未应用数据增强时,模型在验证集和测试集上表现出一定准确性和稳定性;应用数据增强后,通过随机删除、替换、插入和交换等策略,进一步提升了模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据增强是一种有效的方式,可以通过扩充训练集,来提高模型的泛化能力和鲁棒性。以下是一些常见的数据增强方法:

目录

一、数据增强的概念 

二、数据增强在Roberta对SST-2数据集的文本二分类任务的应用

2.1 未应用数据增强

2.2 加入数据增强


一、数据增强的概念 

  1. 同义替换:使用WordNet等知识库,将训练集中的一些单词进行同义替换,可以使模型更好地学习单词之间的语义关系。

  2. 随机删除:随机从输入文本中删除一些单词,可以增加模型对上下文的理解,提高模型的鲁棒性。

  3. 随机插入:随机在输入文本中插入一些未出现过的单词,可以增加模型的记忆能力,提高模型的泛化能力。

  4. 随机交换:随机交换输入文本中的一些单词位置,可以增加模型对语法和句法结构的学习能力,提高模型的准确性。

  5. 噪声注入:对输入文本添加一些随机的噪声,比如错别字、符号等,以增加模型的鲁棒性和泛化能力。

以上方法并不是所有场景都适用,要根据具体数据集的情况和模型训练的需求,选择合适的数据增强方法。通过数据增强࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dr.Petrichor

作者逐个题目分析的噢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值