奇异值分解

奇异值分解(SVD):可以将一个比较复杂的矩阵用更小更简单的几个子矩阵相乘来表示,这些小矩阵描述的是矩阵的重要特性。


特征值分解
特征值:若向量V是方阵A的特征向量,则可以表示成 A V = λ V AV = \lambda V AV=λV 这时候向量V是A的特征向量, λ \lambda λ 则为特征值


特征值分解 A = Q Σ Q − 1 A = Q \Sigma Q^{-1} A=QΣQ1 Q是特征向量组成的,E是一个对角阵,对角线上的元素是特征值


矩阵 * 向量相当于线性变换
1. 若矩阵是对称的,变换相当于对X,Y轴方向上的一个拉伸变换
2. 若矩阵是非对称的,变换相当于对一个轴进行拉伸变换

矩阵其实就是向量高维空间下的一个线性变换


特征值分解得到前N个特征向量,对应了矩阵最最主要N个变化方向
特征值分解 --> 特征值 + 特征向量
特征值:这个特征的重要程度
特征向量: 表示这个特征是什么 --> 线性子空间


特征值分解只只适用于方阵,扩展到普通矩阵,衍生出奇异值分解 A = U Σ V T A = U \Sigma V^T A=UΣVT
U: NN方阵,称为左奇异向量
E:N
M 矩阵,除了对角线元素,其余都是0,对象线上元素为奇异值
V T V^T VT 右奇异向量


如何将特征值与奇异值关联起来呢
用 A的转置乘以A,得到新的方阵
A T ∗ A ∗ V i = λ ∗ V i A^T * A * V_i = \lambda * V_i ATAVi=λVi.
可以得到V 右奇异向量
此外,特征值 σ = λ i \sigma = \sqrt {\lambda_i} σ=λi
左奇异向量 μ i = 1 σ A V i \mu_i = \frac {1} {\sigma}A V_i μi=σ1AVi


因为奇异值减少的特别快,所以可以用前r大的奇异值来近似描述矩阵 A m ∗ n ≈ U M ∗ r Σ r ∗ r V r ∗ n T A_m*n \approx U_M*r \Sigma_r*r V^T_{r*n} AmnUMrΣrrVrnT
奇异值分解的几何含义:对于任何的一个矩阵,我们要找到一组两两正交单位向量序列,使得矩阵作用在此向量序列上后得到新的向量序列保持两两正交

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值