矩阵博弈的纯策略与混合策略

矩阵对策:纯策略

矩阵对策就是有限零和二人对策,指的是参加对策的局中人只有两方(或二人),每一方局中人的可供选择策略数是有限多个,而且每一局对策结束时,一方的收入(或赢得)等于另一方的支出(或称输出),换句话说,二方得失之和总是等于零。
其中对策以矩阵的形式表示,设甲乙双方对弈,其中每一行代表甲的策略集,每一列代表乙的策略集,甲和乙各可以根据矩阵选择自己的策略集,行列的交点为对弈的结果。
例:
在这里插入图片描述
在双方已知矩阵的情况下,可以形成理想状态的最大必胜(最小必败)策略,即甲的最优赢得和乙的最优支付,这个策略的结果称为矩阵对策的值,该值的坐标称为鞍点

纯策略的鞍点

在这里插入图片描述
我们可以通过上表看到,我们罗列甲乙的策略,然后针对甲的策略集,先从每行中取最小,再从中取最大,得V1,再针对乙的策略集,先从每列取最大,再从中取最小,得V2,若纯策略有解,V1与V2必然相等
而构成V1与V2的最优纯策略,称鞍点。
例:如下矩阵
7 ,8 ,2
3 ,7 ,3
8 ,6 ,4
每行取最小为 2,3,4
再取其中最大为4,得V1
每列取最大为8,8,4
再取最小为4,得V2
V1=V2,得鞍点为(3,3)。
PS:
在零和博弈中,鞍点等同于纳什均衡点。
可以存在多个鞍点,但当多个鞍点存在时鞍点数为偶数。

博弈简化的超优原则

定义:
在这里插入图片描述
即,如果有一行的值均小于等于另外一行,可去掉而不影响结果。
同样,如果有一列的值均大于等于另外一列,可去掉而不影响结果。
简略的证明就是,当某一行的值均小于另外一行时,该行任意一元素X,必小于等于同列某一元素,按列取最大原则,成为无效元素。同理该行的最小元素X,必小于其他某一行最小值,因此整行可去。
例:
在这里插入图片描述

矩阵对策:混合策略

每一种游戏依具其规则的不同会存在两种纳什均衡,一种是纯策略纳什均衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什均衡,以石头剪刀布为例,无论双方采用哪种策略组合,输的一方总可以改变策略使自己反败为胜,因此没有纯策略的纳什均衡。通过引入“随机性”来解决这个问题。
通俗地解释,混合策略就是在纯策略上加上概率,在一次博弈中,玩家随机地选择一种纯策略。

混合策略的线性方程解法

在这里插入图片描述
通过联立方程,我们得出X=1/6,即解集为(1/6,5/6),代回原公式,得V1=V2=4/3。可认为在双方都采取最优策略的情况下,平均每次甲方赢取4/3个单位收益。

矩阵策略的图解法

图解法亦是同理,当遇到2×n或m×2的矩阵对策问题,我们可以通过线性方程联立在坐标系解决。其中坐标系的横轴为概率,纵轴为收益。在这几条直线相交所划出的范围内,找到最大的纵坐标。纵坐标对应的横坐标,为策略的概率。
以上题为例,
在这里插入图片描述
通过联立图像我们可得最优策略的概率与收益。
例:收益矩阵
2,3,11
7,5,2
联立图解:
在这里插入图片描述
在三条直线共同划分出的区域内,寻找到最大纵坐标 y = 49/11,并得出概率集(0, 9/11, 2/11)。

混合策略的线性规划法

通过上图的图解已经可以发现,图解法其实运用了线性规划的思路。实际上我们可以通过联立线性规划不等式组,来进行求解。
我们以上题为例:
2,3,11
7,5,2
我们可将其化为两个互为对偶的线性规划问题:
构建F(x):
2 x1+7 x2 ≥ 1
3 x1+5 x2 ≥ 1
11 x1+2 x2 ≥ 1
F(x) = x1+x2 → min
构建Z(y):
2y1+3y2+11y3 ≤ 1
7y1+5y2+2y3 ≤ 1
Z(y) = y1+y2+y3 → max
即可得解。

  • 18
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值