【LeetCode - 每日一题】979. 在二叉树中分配硬币 (2023.07.14)

文章介绍了一种在二叉树中均匀分配硬币的方法,通过递归策略从叶子节点开始,然后回溯。每个节点的目标是拥有一个硬币,而移动硬币的次数被计算为节点子树之间的差异。关键在于避免在回溯过程中重复计算,以确保正确性。解决方案的时间复杂度为O(N),空间复杂度为O(N)。
摘要由CSDN通过智能技术生成

979. 在二叉树中分配硬币

题意

  • 移动硬币使得每个节点只有一枚硬币
  • 子节点可以向父节点移动硬币,父节点也可以向子节点移动硬币

解法 递归实现

树的题目一般都是递归到叶子节点,然后向上回溯实现的。

因此,假设中间节点 root,以其左右孩子为根的子树都已经实现了每节点一个硬币,且其左孩子拥有的硬币数为 l,其右孩子拥有的硬币数为 r,那么,左孩子需要移动 l - 1 枚硬币到父节点,右孩子需要移动 r - 1 枚硬币到父节点,其左右孩子共移动 abs(l) + abs(r) 次硬币,其父节点共有 l + r - root->val 枚硬币。

move 函数返回当前节点需要移动给父节点的硬币数,即 l + r - root->val - 1 枚。

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int move(TreeNode* root, int& ans)
    {
        if(root == nullptr) return 0;  

        // 需要移动的次数
        // ans += abs(move(root->left, ans)) + abs(move(root->right, ans));
        int moveLeft = move(root->left, ans);
        int moveRight = move(root->right, ans);
        ans += abs(moveLeft) + abs(moveRight);
        // cout<<moveLeft<<" "<<moveRight<<" "<<ans<<" "<<moveLeft + moveRight + root->val - 1<<endl;
        return moveLeft + moveRight + root->val - 1;
        // return move(root->left, ans) + abs(move(root->right, ans)) + root->val - 1;
    }
    int distributeCoins(TreeNode* root) {
        int ans = 0;

        move(root, ans);

        return ans;
    }
};

ATTENTION

  • 不能直接 return move(root->left, ans) + abs(move(root->right, ans)) + root->val - 1;,这样会多次重复修改 ans 的值,导致结果错误。

复杂度分析

时间复杂度 O(N):每个节点遍历一遍。
空间复杂度 O(N):递归深度与二叉树的深度有关,二叉树深度最小为 logN,最大为 N。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值