离散数学【01】——逻辑和证明

1. 命题逻辑

逻辑规则给出了数学语句的准确含义,可以用于区分数学论证的有效或无效等。学习逻辑能够帮助我们理解和构造正确的数学论证。(这里我们谈论的是形式逻辑,其主要内容是归纳与演绎)

1.1 命题

逻辑的基本构件——命题

命题是一个陈述语句(陈述事实的语句),它只能取真或假(异或)。


使用集合映射的理论:

domain: 所有命题,记为P

codomain:{T,F},记为C

函数: f ( x ) : 如 果 x 为 真 则 返 回 T , 如 果 x 为 假 则 返 回 F 。 x ∈ P f(x):如果x为真则返回T,如果x为假则返回F。x\in P f(x):xTxFxP


故我们可以看到一句话是命题需要满足两个条件

  1. 陈述句
  2. 能够判断真假,要么真要么假。

例如:x+1=2便不是命题因为它不能被判断真假

像使用字母表示数值的变量一样,我们会使用字母来表示命题变量(语句变量),即命题的变量。习惯使用如下字母: p , q , r , s , . . . p,q,r,s,... p,q,r,s,...

不能用更简单的命题来表示的命题称为原子命题

涉及命题的逻辑领域就被称为命题演算(命题逻辑)

由已知命题用逻辑运算符(联接词)组合而来的命题也被称为复合命题

1.2 命题运算

定 义   1 :   令 p 为 一 命 题 , 则 p 的 否 定 ┐ p ( 也 可 记 作 p ˉ ) , 指 “ 不 是 p 所 指 的 情 形 ” 。 命 题 ┐ p 读 作 “ 非 p ” 。 p 的 否 定 的 真 值 和 p 的 真 值 相 反 。 {\color{Purple}{定义\,1:}}\,令p为一命题,则p的否定┐p(也可记作\bar{p}),指“不是p所指的情形”。\\ 命题┐p读作“非p”。p的否定的真值和p的真值相反。 1:ppp(pˉ),ppppp
定 义   2 :   令 p 和 q 为 命 题 。 p 、 q 的 合 取 即 命 题 “ p 并 且 q ” , 记 作 p ∧ q 。 当 p 和 q 都 为 真 时 , p ∧ q 命 题 为 真 , 否 则 为 假 。 {\color{Purple}{定义\,2:}}\,令p和q为命题。p、q的合取即命题“p并且q”,记作p\wedge q。当p和q都为真时,p\wedge q命题为真,否则为假。 2:pqpqpq,pqpqpq

定 义   3 :   令 p 和 q 为 命 题 。 p 、 q 的 析 取 即 命 题 “ p 或 q ” , 记 作 p ∨ q 。 当 p 和 q 均 为 假 时 , 析 取 命 题 p ∨ q 为 假 , 否 则 为 真 。 {\color{Purple}{定义\,3:}}\,令p和q为命题。p、q的析取即命题“p或q”,记作p\vee q。当p和q均为假时,析取命题p\vee q为假,否则为真。 3:pqpqpqpqpqpq

定 义   4 :   令 p 和 q 为 命 题 。 p 和 q 的 异 或 ( 记 作 p ⨁ q ) 是 这 样 的 一 个 命 题 : 当 p 和 q 中 恰 好 只 有 一 个 为 真 时 命 题 为 真 , 否 则 为 假 {\color{Purple}{定义\,4:}}\,令p和q为命题。p和q的异或(记作p\bigoplus q)是这样的一个命题:\\当p和q中恰好只有一个为真时命题为真,否则为假 4:pqpqpqpq

定 义   5 :   令 p 和 q 为 命 题 。 条 件 语 句 p → q 是 命 题 “ 如 果 p , 则 q ” 。 当 p 为 真 而 q 为 假 时 , 条 件 语 句 p → q 为 假 , 否 则 为 真 。 在 条 件 语 句 p → q 中 , p 称 为 假 设 ( 前 件 、 前 提 ) , q 称 为 结 论 ( 后 件 ) {\color{Purple}{定义\,5:}}\,令p和q为命题。条件语句p\rightarrow q是命题“如果p,则q”。当p为真而q为假时,条件语句p\rightarrow q为假,否则为真。\\在条件语句p\rightarrow q中,p称为假设(前件、前提),q称为结论(后件) 5:pqpqp,qpqpqpqpq

定 义   6 :   令 p 和 q 为 命 题 。 双 条 件 语 句 p ↔ q 是 命 题 “ p 当 且 仅 当 q ( i f f ) ” 。 当 p 和 q 有 同 样 的 真 值 时 , 双 条 件 语 句 为 真 否 则 为 假 。 双 条 件 语 句 也 称 为 双 向 蕴 含 {\color{Purple}{定义\,6:}}\,令p和q为命题。双条件语句p\leftrightarrow q是命题“p当且仅当q(iff)”。\\当p和q有同样的真值时,双条件语句为真否则为假。双条件语句也称为双向蕴含 6:pqpqpq(iff)pq

以上定义了6个重要的联接词——否定,合取,析取,异或,条件,双条件

其真值表列出如下:

pq ┐ p ┐p p p ∧ q p\wedge q pq p ∨ q p\vee q pq p ⨁ q p\bigoplus q pq p → q p\rightarrow q pq p ↔ q p\leftrightarrow q pq
TTFTTFTT
TFFFTTFF
FTTFTTTF
FFTFFFTT

为省略不必要的括号而有的逻辑运算的优先级:

运算符优先级
┐ ┐ 1
∧ \wedge 2
∨ \vee 3
→ \rightarrow 4
↔ \leftrightarrow 5

1.3 命题等价式

数学中一个重要步骤就是用真值相同的一条语句替换另一条语句。因此,从给定复合命题生成具有相同真值命题的方法广泛使用于数学证明的构造。

先看看几个重要的名词

定 义   1 :   一 个 真 值 永 远 是 真 的 复 合 命 题 ( 无 论 其 中 出 现 的 命 题 变 量 的 真 值 是 什 么 ) , 称 为 永 真 式 ( t a u t o l o g y ) , 也 称 重 言 式 。 一 个 真 值 永 远 为 假 的 复 合 命 题 称 为 矛 盾 式 ( c o n t r a d i c t i o n ) 。 既 不 是 永 真 式 又 不 是 矛 盾 式 的 复 合 命 题 称 为 可 能 式 ( c o n t i n g e n c y ) {\color{Purple}{定义\,1:}}\, 一个真值永远是真的复合命题(无论其中出现的命题变量的真值是什么),\\称为永真式(tautology),也称重言式。\\一个真值永远为假的复合命题称为矛盾式(contradiction)。\\既不是永真式又不是矛盾式的复合命题称为可能式(contingency) 1:(tautology),(contradiction)(contingency)

下面可以来定义逻辑等价了

定 义   2 :   如 果 p ↔ q 是 永 真 式 , 则 复 合 命 题 p 和 q 称 为 是 逻 辑 等 价 的 。 记 作 p ≡ q {\color{Purple}{定义\,2:}}\,如果p\leftrightarrow q是永真式,则复合命题p和q称为是逻辑等价的。记作p\equiv q 2:pqpqpq

一些重要的逻辑等价式

等价式名称
p ∧ T ≡ p p ∨ F ≡ p p\wedge T \equiv p\\ p \vee F \equiv p pTppFp恒等律
p ∨ T ≡ T p ∧ F ≡ F p\vee T \equiv T\\ p \wedge F \equiv F pTTpFF支配律
p ∧ p ≡ p p ∨ p ≡ p p\wedge p \equiv p \\ p\vee p\equiv p pppppp幂等律
┐ ( ┐ p ) ≡ p ┐(┐p)\equiv p (p)p双重否定律
p ∨ q ≡ q ∨ q p ∧ q ≡ q ∧ p p\vee q \equiv q\vee q \\ p\wedge q \equiv q\wedge p pqqqpqqp交换律
( p ∧ q ) ∧ r ≡ p ∧ ( q ∧ r ) ( p ∨ q ) ∨ r ≡ p ∨ ( q ∨ r ) (p\wedge q )\wedge r\equiv p\wedge(q\wedge r)\\(p\vee q )\vee r\equiv p\vee(q\vee r) (pq)rp(qr)(pq)rp(qr)结合律
p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r ) p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r ) p\vee(q\wedge r )\equiv (p\vee q )\wedge(p\vee r) \\p\wedge(q\vee r )\equiv (p\wedge q )\vee(p\wedge r) p(qr)(pq)(pr)p(qr)(pq)(pr)分配律
┐ ( p ∧ q ) ≡ ┐ p ∨ ┐ q ┐ ( p ∨ q ) ≡ ┐ p ∧ ┐ q ┐(p\wedge q) \equiv ┐p\vee ┐q\\┐(p\vee q) \equiv ┐p\wedge ┐q (pq)pq(pq)pq德·摩根律
p ∨ ( p ∧ q ) ≡ p p ∧ ( p ∨ q ) ≡ p p\vee (p\wedge q )\equiv p\\p\wedge (p\vee q)\equiv p p(pq)pp(pq)p吸收律
p ∨ ┐ p ≡ T p ∧ ┐ p ≡ F p\vee ┐p \equiv T\\p\wedge ┐p\equiv F ppTppF否定律
条件命题的逻辑等价式
p → q ≡ ┐ p ∨ q p \rightarrow q\equiv ┐p\vee q pqpq
p → q ≡ ┐ q → ┐ p p\rightarrow q \equiv ┐q\rightarrow ┐p pqqp
p ∨ q ≡ ┐ p → q p\vee q \equiv ┐p \rightarrow q pqpq
p ∧ q ≡ ┐ ( p → ┐ q ) p\wedge q \equiv ┐(p\rightarrow ┐q) pq(pq)
┐ ( p → q ) ≡ p ∧ ┐ q ┐(p\rightarrow q)\equiv p \wedge ┐q (pq)pq
( p → q ) ∧ ( p → r ) ≡ p → ( p ∧ r ) (p\rightarrow q )\wedge (p\rightarrow r)\equiv p\rightarrow(p\wedge r) (pq)(pr)p(pr)
( p → r ) ∧ ( q → r ) ≡ ( p ∨ q ) → r (p\rightarrow r)\wedge(q\rightarrow r) \equiv(p\vee q)\rightarrow r (pr)(qr)(pq)r
( p → q ) ∨ ( p → r ) ≡ p → ( q ∨ r ) (p\rightarrow q )\vee(p\rightarrow r)\equiv p\rightarrow(q\vee r) (pq)(pr)p(qr)
( p → r ) ∨ ( q → r ) ≡ ( p ∧ q ) → r (p \rightarrow r)\vee (q \rightarrow r)\equiv (p\wedge q )\rightarrow r (pr)(qr)(pq)r
双条件命题的逻辑等价式
p ↔ q ≡ ( p → q ) ∧ ( q → p ) p\leftrightarrow q\equiv (p\rightarrow q)\wedge(q\rightarrow p) pq(pq)(qp)
p ↔ q ≡ ┐ p ↔ ┐ q p\leftrightarrow q \equiv ┐p \leftrightarrow ┐q pqpq
p ↔ q ≡ ( p ∧ q ) ∨ ( ┐ p ∧ ┐ q ) p\leftrightarrow q \equiv (p\wedge q )\vee(┐p \wedge ┐q) pq(pq)(pq)
┐ ( p ↔ q ) ≡ p ↔ ┐ q ┐(p\leftrightarrow q )\equiv p\leftrightarrow ┐q (pq)pq

德摩根律的扩展:
┐ ( ⋁ j = 1 n p j ) ≡ ⋀ j = 1 n ( ┐ p j ) ┐ ( ⋀ j = 1 n p j ) ≡ ⋁ j = 1 n ( ┐ p j ) ┐(\bigvee_{j=1}^{n}p_j)\equiv\bigwedge_{j=1}^{n}(┐p_j) \\ ┐(\bigwedge_{j=1}^{n}p_j)\equiv\bigvee_{j=1}^{n}(┐p_j) (j=1npj)j=1n(pj)(j=1npj)j=1n(pj)
复合命题中的一个命题可以用与它逻辑等价的复合命题替换而不改变原复合命题的真值。以此可以构造更多的逻辑等价式

可满足性:如果存在一个对其变量的真值赋值使其为真时称该复合命题为可满足的(即为永真式或可能式)。这样的一个赋值称为这个特定的可满足性问题的一个

2. 谓词逻辑

谓词逻辑是一种表达能力更强的逻辑。

2.1 谓词

使用举例来说明谓词:

如语句" x 大 于 3 x大于3 x3“可以分为两部分:第一部分是变量 x x x,第二部分是谓词(“大于3”)表明语句的主语具有一个性质。可以使用命题函数 P ( x ) P(x) P(x)来表示语句” x 大 于 3 x大于3 x3"。一旦给变量 x x x赋值, P ( x ) P(x) P(x)就成为命题并具有真值。

变量可以有多个,

涉及n个变量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn的语句可以表示为:
P ( x 1 , x 2 , . . . , x n ) P(x_1,x_2,...,x_n) P(x1,x2,...,xn)
P 也 成 为 n 位 谓 词 或 n 元 谓 词 P也成为n位谓词或n元谓词 Pnn

谓词可以用来验证计算机程序,描述合法输入的语句叫作前置条件,程序运行的输出应该满足的条件成为后置条件。前置条件和后置条件都可用谓词来表达。

2.2 量词

将命题函数变为命题的方式,其一可以将变量赋值,其二进行量化

有两类常见的量化:

  • 全称量化
  • 存在量化

定 义   1 :   P ( x ) 的 全 称 量 化 是 语 句 “ P ( x ) 对 x 在 其 论 域 的 所 有 值 为 真 。 ” 符 号 ∀ x P ( x ) 表 示 P ( x ) 的 全 称 量 化 , ∀ 称 为 全 称 量 词 命 题 ∀ x P ( x ) 读 作 “ 对 所 有 x , P ( x ) ” 或 “ 对 每 个 x , P ( x ) ” 。 一 个 使 P ( X ) 为 假 的 个 体 称 为 ∀ x P ( x ) 的 反 例 。 {\color{Purple}{定义\,1:}}\,P(x)的全称量化是语句“P(x)对x在其论域的所有值为真。”\\符号\forall xP(x)表示P(x)的全称量化,\forall 称为全称量词\\ 命题\forall xP(x)读作“对所有x,P(x)”或“对每个x,P(x)”。\\ 一个使P(X)为假的个体称为\forall xP(x)的反例。 1:P(x)P(x)xxP(x)P(x)xP(x)x,P(x)x,P(x)使P(X)xP(x)

定 义   2 :   P ( x ) 的 存 在 量 化 是 命 题 “ 论 域 中 存 在 一 个 个 体 x 满 足 P ( x ) ” 。 用 符 号 ∃ x P ( x ) 表 示 , 其 中 ∃ 称 为 存 在 量 词 {\color{Purple}{定义\,2:}}\,P(x)的存在量化是命题“论域中存在一个个体x满足P(x)”。\\用符号\exist xP(x)表示,其中\exist 称为存在量词 2:P(x)xP(x)xP(x)

主要量词具有比所以逻辑运算符更高的优先级

2.2.1 有限域上的量词理解

当论域是一个有限域时,论域中的元素为 x 1 , x 2 , . . . , x n   n 为 正 整 数 x_1,x_2,...,x_n\,n为正整数 x1,x2,...,xnn, ∀ x P ( x ) \forall xP(x) xP(x)
P ( x 1 ) ∧ P ( x 2 ) ∧ . . . ∧ P ( x n ) P(x_1)\wedge P(x_2)\wedge ... \wedge P(x_n) P(x1)P(x2)...P(xn)
是等价的。

∃ x P ( x ) \exists xP(x) xP(x)
P ( x 1 ) ∨ P ( x 2 ) ∨ . . . ∨ P ( x n ) P(x_1)\vee P(x_2) \vee ...\vee P(x_n) P(x1)P(x2)...P(xn)
等价。

以次就可以看出量化与循环的关系:

假定论域中有n个变量,对x的n个值循环查看P(x)是否总是真可以来确定 ∀ x P ( x ) \forall xP(x) xP(x)是否为真。如果P(X)不总是为真当只要得到一个为真则 ∃ x P ( x ) \exist xP(x) xP(x)为真。

2.2.2 变量绑定

上面都在关注量词本身,对于被量词作用的变量 x x x来说,我们称之为约束的,不被约束的变量称为自由的

现在可以总结,使命题函数变为命题,那么其中的变量要么是约束的变量,要么是已赋值的自由变量。

2.2.3 逻辑等价

涉及到谓词和量词的逻辑等价条件是较为苛刻。
定 义   1 :   涉 及 谓 词 和 量 词 的 语 句 是 逻 辑 等 价 当 且 仅 当 无 论 用 什 么 谓 词 代 入 这 些 语 句 , 也 无 论 为 这 些 命 题 函 数 里 的 变 量 指 定 什 么 论 域 , 它 们 都 有 相 同 的 真 值 。 我 们 用 S ≡ T 表 示 涉 及 谓 词 和 量 词 的 两 个 语 句 S 和 T 是 逻 辑 等 价 的 。 {\color{Purple}{定义\,1:}}\,涉及谓词和量词的语句是逻辑等价当且仅当无论用什么谓词代入这些语句,\\也无论为这些命题函数里的变量指定什么\\论域,它们都有相同的真值。\\我们用S\equiv T表示涉及谓词和量词的两个语句S和T是逻辑等价的。 1:STST

2.2.4 量化表达式的否定

┐ ∀ x P ( x ) ≡ ∃ x ┐ P ( x ) ┐\forall xP(x)\equiv \exist x┐P(x) xP(x)xP(x)

┐ ∃ x P ( x ) ≡ ∀ x ┐ P ( x ) ┐\exist x P(x) \equiv \forall x ┐P(x) xP(x)xP(x)

2.2.5 嵌套量词

嵌套量词,是说一个量词出现在另一个量词的作用域中。如
∀ x ∃ y ( x + y = 1 ) \forall x\exist y(x+y=1) xy(x+y=1)
在量词范围内的一切都可以认为是一个命题函数。比如上式与 ∀ x Q ( x ) \forall xQ(x) xQ(x)是一样的,其中 Q ( x ) Q(x) Q(x)表示 ∃ y P ( x , y ) \exists yP(x,y) yP(x,y),而 P ( x , y ) P(x,y) P(x,y)表示 x + y = 1 x+y=1 x+y=1。 理解这个对理解嵌套量词与嵌套循环的关系很有帮助

要注意嵌套量词虽然是紧挨着的,但是位置是不能随意更换的,其作用域是 不同的,但这并不是根本原因,能否交换需要看其表达的意思是否改变。

语句何时为真何时为假
∀ x ∀ y P ( x , y ) ≡ ∀ y ∀ x P ( x , y ) \forall x\forall yP(x,y)\equiv \forall y\forall xP(x,y) xyP(x,y)yxP(x,y)对每一对x、y,P(x,y)为真存在一对x、y使得P(x,y)为假
∀ x ∃ y P ( x , y ) \forall x\exist yP(x,y) xyP(x,y)对每一个x,都存在一个y使P(x,y)为真存在一个x,使得P(x,y)对每个x,y都为假
∃ x ∀ y P ( x , y ) \exist x\forall yP(x,y) xyP(x,y)存在一个x,使得P(x,y)对所有y均为真对每个x,存在一个y使P(x,y)为假
∃ x ∃ y P ( x , y ) ≡ ∃ y ∃ x P ( x , y ) \exists x\exist y P(x,y)\equiv \exist y \exist xP(x,y) xyP(x,y)yxP(x,y)存在一对x、y,使P(x,y)为真对每一对x,y,P(x,y)均为假

3. 推理和证明

数学中的证明是建立数学命题真实性的有效论证。

论证(argument): 是指一连串的命题并以结论为最后的命题。

有效性(valid): 是指论证的最后一个命题必须根据论证过程前面的命题或前提(premise)的真实性推出
定 义   1 :   逻 辑 命 题 中 的 一 个 论 证 是 一 连 串 的 命 题 。 除 了 论 证 中 最 后 一 个 命 题 外 都 叫 做 前 提 , 最 后 那 个 命 题 叫 做 结 论 。 一 个 论 证 是 有 效 的 , 如 果 它 的 所 有 前 提 为 真 蕴 含 着 结 论 为 真 。 命 题 逻 辑 中 的 论 证 形 式 是 一 连 串 涉 及 命 题 变 量 的 复 合 命 题 。 无 论 用 什 么 特 定 命 题 来 替 换 其 中 的 命 题 变 量 , 如 果 前 提 均 为 真 时 结 论 为 真 , 则 称 该 论 证 形 式 是 有 效 的 。 {\color{Purple}{定义\,1:}}\,逻辑命题中的一个论证是一连串的命题。\\除了论证中最后一个命题外都叫做前提,最后那个命题叫做结论。\\一个论证是有效的,如果它的所有前提为真蕴含着结论为真。\\ 命题逻辑中的论证形式是一连串涉及命题变量的复合命题。\\无论用什么特定命题来替换其中的命题变量,\\如果前提均为真时结论为真,则称该论证形式是有效的。 1:

3.1 命题逻辑的推理规则

为了完成一个有效的论证,我们需要首先有一个有效的论证形式,一个论证形式是否有效可以通过复合命题的真值表来证明,但这时冗长乏味的。故,现在已经建立了一些相对简单的有效的论证形式(称为推理规则)。

推理规则被当作基本构件用来构造更多复杂的有效论证形式。

推理规则永真式名称
p , p → q ∴ q p,p\rightarrow q \\\therefore q p,pqq ( p ∧ ( p → q ) ) → q (p\wedge (p\rightarrow q ))\rightarrow q (p(pq))q假言推理
┐ q , p → q ∴ ┐ p ┐q,p\rightarrow q \\\therefore ┐p q,pqp ( ┐ q ∧ ( p → q ) ) → ┐ p (┐q\wedge(p\rightarrow q))\rightarrow ┐p (q(pq))p取拒式
p → q , q → r ∴ p → r p\rightarrow q,q\rightarrow r \\\therefore p\rightarrow r pq,qrpr ( ( p → q ) ∧ ( q → r ) ) → ( p → r ) ((p\rightarrow q)\wedge(q\rightarrow r))\rightarrow (p\rightarrow r) ((pq)(qr))(pr)假言三段论
p ∨ q , ┐ p ∴ q p\vee q,┐p \\\therefore q pq,pq ( ( p ∨ q ) ∧ ┐ p ) → q ((p\vee q)\wedge ┐p)\rightarrow q ((pq)p)q析取三段论
p ∴ p ∨ q p\\\therefore p\vee q ppq p → ( p ∨ q ) p\rightarrow (p\vee q) p(pq)附加律
p ∧ q ∴ p p\wedge q \\\therefore p pqp ( p ∧ q ) → p (p\wedge q )\rightarrow p (pq)p化简律
p , q ∴ p ∧ q p,q\\\therefore p\wedge q p,qpq ( ( p ) ∧ ( q ) ) → p ∧ q ((p)\wedge (q)) \rightarrow p\wedge q ((p)(q))pq合取律
p ∨ q , ┐ p ∨ r ∴ q ∨ r p\vee q ,┐p\vee r \\\therefore q\vee r pq,prqr ( ( p ∨ q ) ∧ ( ┐ p ∨ r ) ) → ( q ∨ r ) ((p\vee q )\wedge (┐p\vee r))\rightarrow (q\vee r ) ((pq)(pr))(qr)肖解律

不有效的论证形式将产生谬误。

下表为量化命题的推理规则

推理规则名称
∀ x P ( x ) ∴ P ( c ) \forall xP(x)\\\therefore P(c) xP(x)P(c)全称实例
P ( c ) , 任 意 c ∴ ∀ x P ( x ) P(c),任意c\\\therefore \forall xP(x) P(c),cxP(x)全称引入
∃ x P ( x ) ∴ P ( c ) , 对 某 个 元 素 \exist xP(x) \\\therefore P(c),对某个元素 xP(x)P(c),存在实例
P ( c ) , 对 某 个 元 素 c ∴ ∃ x P ( x ) P(c),对某个元素c\\\therefore \exist xP(x) P(c)cxP(x)存在引入

3.2 证明

在此先区分一下形式化证明与非形式化证明(informal proof) ,形式化证明是严格按照前面的论证形式的证明,而为方便人们阅读,非形式化证明是很常见的,它往往会在一个步骤中用到多于一条的推理规则。

定理(theorem):能够被证明是真的语句,而且在数学中,常常被用来描述有些重要的语句。不太重要的有时被称为事实或结论

引理(lemma):重要性略低但但有助于证明其他结论的定理。使用一系列引理来进行复杂的证明时通常比较容易理解。

推论(lemma):是从一个已被证明的定理可以直接建立起来的一个定理。

猜想(conjecture):是一个被提出来被认为是真的命题,通常基于部分证据、启发式论证或专家的直觉。当猜想被证明时,猜想就变成了定理。

证明(proof):用来展示一个定理是真的。证明就是建立定理真实性的一个有效论证。证明中的前提可以包括公理(axiom)(或假设(postulate))

3.2.1证明定理的方法

3.2.1.1 直接证明法

从前提出发证明到结论,证明“如果p则q” , 可通过证明: p → q p\rightarrow q pq

3.2.1.2 间接证明法

反证法:从结论出发,证明:“如果p,则q”, 可通过证明: ┐ q → ┐ p ┐q\rightarrow ┐p qp

归谬法: 证明p,可通过证明: ┐ p → ( r ∧ ┐ r ) ┐p\rightarrow (r\wedge ┐r) p(rr)

在我看来反证法与归谬法较相似

空证明和平凡证明:对于 p → q p\rightarrow q pq,如过已经知道p为假时,那么 p → q p\rightarrow q pq一定为真,这是空证明。如果知道q为真,那么 p → q p\rightarrow q pq一定为真这是平凡证明。需要了解这两方面,不然当遇到某些数学证明时会感到疑惑。

3.2.2 证明方法和策略

下面要说的常用的一些更复杂的证明策略

两个基础且重要证明策略是:穷举法与分情形证明法。

分情形证明法的依据来源于:
( p 1 ∨ p 2 ∨ . . . ∨ p n ) → q ≡ ( p 1 → q ) ∧ ( p 2 → q ) ∧ . . . ∧ ( p n → q ) (p_1\vee p_2\vee ...\vee p_n)\rightarrow q \equiv (p_1\rightarrow q)\wedge(p_2\rightarrow q)\wedge...\wedge(p_n\rightarrow q) (p1p2...pn)q(p1q)(p2q)...(pnq)

3.2.2.1 存在性证明

对于 ∃ x P ( x ) \exist xP(x) xP(x)类命题的证明,称存在性证明

存在性证明可分为构造性证明和非构造性证明。构造性证明就是找个这样的一个使 P ( a ) P(a) P(a)为真的元素a。而非构造性证明并不找出具体的这样的元素。常用的方法是归谬证明

从存在性证明继续扩展而来的唯一性证明,需要证明两部分:

  • 存在性
  • 唯一性

等同于
∃ x ( P ( x ) ∧ ∀ y ( y ≠ x → ┐ P ( y ) ) ) \exist x(P(x)\wedge \forall y(y\neq x\rightarrow ┐P(y))) x(P(x)y(y=xP(y)))

3.2.2.2 其他的证明策略

还有许多其他的证明策略,其我认为很重要的有:数学归纳法,强归纳法,结构归纳法,良序归纳法


数学归纳法的原理

为证明对所有的正整数 n n n, P ( n ) P(n) P(n)为真,其中 P ( n ) P(n) P(n)是一个命题函数,需要完成两个过程:

基础步骤:证明命题 P ( 1 ) P(1) P(1)为真。

归纳步骤:证明对每个正整数 k k k来说,蕴含式 P ( k ) → P ( k + 1 ) P(k)\rightarrow P(k+1) P(k)P(k+1)为真。


( P ( 1 ) ∧ ∀ k ( P ( k ) → P ( k + 1 ) ) → ∀ n P ( n ) (P(1)\wedge \forall k(P(k)\rightarrow P(k+1))\rightarrow \forall nP(n) (P(1)k(P(k)P(k+1))nP(n)


强归纳法

要证明对所有的正整数 n n n而言,都有 P ( n ) P(n) P(n)为真,其中 P ( n ) P(n) P(n)为命题函数,我们要完成如下步骤

基础步骤:证明 P ( 1 ) P(1) P(1)为真。

归纳步骤:要证明对所有正整数 k k k来说,蕴含式 [ P ( 1 ) ∧ P ( 2 ) ∧ . . . ∧ P ( k ) ] → P ( k + 1 ) [P(1)\wedge P(2)\wedge...\wedge P(k)]\rightarrow P(k+1) [P(1)P(2)...P(k)]P(k+1)也为真。


( P ( 1 ) ∧ ∀ k ( [ P ( 1 ) ∧ P ( 2 ) ∧ . . . ∧ P ( k ) ] → P ( k + 1 ) ) ) → ∀ n P ( n ) (P(1)\wedge \forall k([P(1)\wedge P(2)\wedge...\wedge P(k)]\rightarrow P(k+1)))\rightarrow\forall nP(n) (P(1)k([P(1)P(2)...P(k)]P(k+1)))nP(n)


结构归纳法是与递归定义向对应的。需要证明基本步骤的正确和递归步骤的正确


良序归纳法
设 S 是 一 个 良 序 集 。 如 果 ( 归 纳 步 骤 ) , 对 所 有 y ∈ S , 如 果 P ( x ) 对 所 有 x ∈ S 且 s ≺ y 为 真 , 则 P ( y ) 真 , 那 么 P ( x ) 对 所 有 的 元 素 x ∈ S 为 真 设S是一个良序集。如果(归纳步骤),对所有y\in S,如果P(x)对所有x\in S且s\prec y 为真,\\则P(y)真,那么P(x)对所有的元素x\in S为真 S()yS,P(x)xSsyP(y)P(x)xS

3.2.2.3 寻找证明的思路

对于一个命题的证明,需要有一个出发点,来引导证明的思路,由此可分为:正向推理与反向推理

使用我自己通俗的说法,从前提出发向结论靠近是正向推理,而从结论出发找到如何得到结论方法是反向推理这是两种角度,两种角度都很重要。

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值