spark RDD基础装换操作--flatmap操作

2.flatMap操作

将原RDD中的每个元素拆分成多个元素,并封装到新的RDD中。
scala> val rddData = sc.parallelize(Array("one,two.three","four,five,six","seven,eight,nine,ten"))
rddData: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at <console>:24

scala> val rddData2 = rddData.flatMap(_.split(","))
rddData2: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at flatMap at <console>:26

scala> rddData2.collect
res0: Array[String] = Array(one, two.three, four, five, six, seven, eight, nine, ten)

说明:
rddData.flatMap(_.split(",")) : 将Array中每一个字符串用“,”切割,切割后是一个数组集合,符合flatMap方法的输出类型

flatMap和Map的区别就是,Map的结果会是Array(Array(one,two,three),Array(four,five,six),Array(seven,eight,nine)),而flatMap的结果是Array(one, two.three, four, five, six, seven, eight, nine, ten),简单点理解就是flatMap进行了扁平化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值