spark RDD基础装换操作--reparation操作

11.repartition操作

创建一个由数字1~100组成的RDD,并且设置为10个分区。然后执行repartition操作,将分区数聚合为“5”,然后再将其拓展为“7”,观察操作后的效果。
scala>  val rddData1 = sc.parallelize(1 to 100,10)
rddData1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at <console>:24

scala>  rddData1.partitions.length
res4: Int = 10

scala>  val rddData2 = rddData1.repartition(5)
rddData2: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[23] at repartition at <console>:26

scala>  rddData2.partitions.length
res7: Int = 5

scala>  val rddData3 = rddData2.repartition(7)
rddData3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[27] at repartition at <console>:28

scala>  rddData3.partitions.length
res8: Int = 7

说明:
可以看到repartition的操作和coalesce操作类似,但repartition更灵活,可以将分区有低向高转,也可以由高向低转。其实coalesce也可以这样但是需要开启shuffle这个参数,如coalesce(7,true)这样,coalesce也可以将分区有低向高转,也可以由高向低转。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值