反幻方
题目:
我国古籍很早就记载着
2 9 4
7 5 3
6 1 8
这是一个三阶幻方。每行每列以及对角线上的数字相加都相等。
下面考虑一个相反的问题。
可不可以用 1~9 的数字填入九宫格。
使得:每行每列每个对角线上的数字和都互不相等呢?
这应该能做到。
比如:
9 1 2
8 4 3
7 5 6
你的任务是搜索所有的三阶反幻方。并统计出一共有多少种。
旋转或镜像算同一种。
比如:
9 1 2
8 4 3
7 5 6
7 8 9
5 4 1
6 3 2
2 1 9
3 4 8
6 5 7
等都算作同一种情况。
请提交三阶反幻方一共多少种。这是一个整数,不要填写任何多余内容。
思路:
首先这道题肯定是需要全排列,然后最后的结果需要除8,因为一个矩阵的旋转和镜像加上自己本身一共有八个。
这里我是用的 dfs(深搜) 并且在检查时用 sort函数进行从小到大的排序,以便于比较是否相同。
话不多说,上代码。
代码:
#include <iostream>
#include <algorithm> // std::sort
using namespace std;
int a[15], b[15], sum[15];
int counts = 0;
// 检查
int Check()
{
int n = 0;

本文介绍了如何使用C++解决第七届蓝桥杯决赛中的反幻方问题,通过深度优先搜索(DFS)策略,寻找所有满足条件的三阶反幻方,并计算其总数为3120种,考虑了矩阵的旋转和镜像情况。
最低0.47元/天 解锁文章
847

被折叠的 条评论
为什么被折叠?



