图神经网络
学人工智能的皮皮虾
人工智能、NLP、知识图谱、大数据
展开
-
Document Modeling with Graph Attention Networks for Multi-grained Machine Reading Comprehension
论文解读:使用图注意力网络进行多粒度机器阅读理解的文档建模阅读目的:学习该论文中基于文档结构的多粒度建模。摘要“自然问题”是一种具有挑战性的新机器阅读理解基准,它具有两个粒度的答案,即长答案(通常是一个段落)和短答案(长答案中有一个或多个实体)。尽管现有方法在此基准上很有效,但它们在训练期间会分别对待这两个子任务,而忽略了它们之间的依赖性。为了解决这个问题,我们提出了一个新颖的多粒度机器阅读理解框架,该框架专注于以文档的分层性质对文档进行建模,这些文档具有不同的粒度级别:文档,段落,句子和标记。我们使原创 2020-07-02 10:52:58 · 799 阅读 · 0 评论 -
如何使用图卷积网络在图上进行深度学习(二)(How to do Deep Learning on Graphs with Graph Convolutional Networks)
Part 2: Semi-Supervised Learning with Spectral Graph Convolutions基于图的机器学习是一项艰巨的任务,因为它非常复杂,而且信息结构也很丰富。这篇文章是有关如何使用图卷积网络(GCN)在图上进行深度学习的系列文章中的第二篇,图卷积网络是一种功能强大的神经网络,旨在直接在图上工作并利用其结构信息。我将简要回顾上一篇文章,但您可以在这里找到该系列的其他部分:图卷积网络的高级介绍具有谱图卷积的半监督学习(本文)在上一篇文章中,我对GCN作了简要翻译 2020-06-30 13:58:08 · 1040 阅读 · 0 评论 -
如何使用图卷积网络在图上进行深度学习(一)(How to do Deep Learning on Graphs with Graph Convolutional Networks)
图的机器学习是一项艰巨的任务,因为它非常复杂,而且信息结构也很丰富。这篇文章是有关如何使用图卷积网络(GCN)在图上进行深度学习的系列文章中的第一篇,图卷积网络是一种功能强大的神经网络,旨在如何利用其结构信息并且直接在图上进行工作。该系列的文章是:图卷积网络的高级介绍频谱图卷积的半监督学习在本文中,我将对GCN进行介绍,并使用编码示例说明如何通过GCN的隐藏层传播信息。我们将看到GCN如何汇总来自先前各层的信息,以及该机制如何产生图中节点的有用特征表示。什么是图卷积网络?GCN是用于基于图的机翻译 2020-06-30 12:29:09 · 544 阅读 · 0 评论 -
Connecting the Dots: Document-level Neural Relation Extraction with Edge-oriented Graphs
文档句子关系抽取 EMNLP 2019论文地址代码地址abstract文档级关系提取是一个复杂的人工过程,需要逻辑推理才能提取文本中命名实体之间的关系。现有的方法使用基于图的神经模型,以单词为节点,边为单词之间的关系,来对句子之间的关系进行编码。这些模型是基于节点的,即,它们仅基于两个目标节点对来形成表示。但是,实体关系可以通过为节点之间构造唯一的边表示来更好地表达。因此,我们提出了一种用于文档级关系提取的面向边的图神经模型,该模型利用不同类型的节点和边来创建文档级图。图边缘的推理机制使用多实例学习原创 2020-05-22 21:01:57 · 1687 阅读 · 0 评论 -
Heterogeneous Graph Neural Networks for Extractive Document Summarization
异构图神经网络用于抽取文档摘要(2020 ACL)abstract学习跨句子之间的关系作为提取文档摘要过程中的关键步骤,已有多种方法被提出来研究该问题。一种直观的方法是将它们放在基于图的神经网络中,该网络具有更复杂的结构以捕获句子之间的关系。在本文中,我们提出了一种基于异构图的神经网络(HETERSUMGRAPH)用于提取摘要,该网络包含除句子外的不同粒度级别的语义节点。这些额外的节点充当句子之间的“中介”,并丰富了跨句关系。此外,通过引入文档节点,我们的图结构可以灵活地自然扩展,从单个文档设置到多文档原创 2020-05-22 11:30:05 · 1712 阅读 · 0 评论