- 在pytorch0.4.0之前版本中 张量(tensor)仅仅具有存值功能的。如果想对其进行求导运算只有将其放入到Variable函数中才具有求到功能。
- 在该版本之后Variable函数的功能直接并入到tensor中。
- 主要需要学习的张量创建方法:
import torch
import numpy as np
# 通过 torch.tensor()创建
# 主要参数 data list或者np数组,dtype 数据类型,device 运行设备, requires_grad 是否计算梯度。
def tensor_create1():
arr = np.ones((3,3))
t = torch.tensor(data=arr,dtype=torch.float,device="cuda",requires_grad=True)
print(t)
# 仅仅需要 传入 一个np数组即可
def tensor_create2():
arr = np.ones((3,3))
t = torch.from_numpy(arr)
print(t)
# mean std 可以是向量和标量,所以有4种组合
def tensor_create3():
mean = torch.tensor(1.0)
std = torch.tensor(1.0)
t_normal = torch.normal(mean, std)
print("mean:{}\nstd:{}".format(mean, std))
print(t_normal)
mean1 = 1
std1 = 1
t_normal1 = torch.normal(mean1, std1,(3,3))
print("mean:{}\nstd:{}".format(mean1, std1))
print(t_normal1)
if __name__ == '__main__':
tensor_create3()
由上述torch.normal()官方文档可知torch.normal()主要有以下4种传参方法。
- (Tensor mean, Tensor std, *, torch.Generator generator, Tensor out)
- (Tensor mean, float std, *, torch.Generator generator, Tensor out)
- (float mean, Tensor std, *, torch.Generator generator, Tensor out)
- (float mean, float std, tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
其中 torch.Generator 可以传入随时生成种子数和设备来控制normal()函数的随机和生成数据设备。