pytorch张量创建(2)

18 篇文章 1 订阅
  1. 在pytorch0.4.0之前版本中 张量(tensor)仅仅具有存值功能的。如果想对其进行求导运算只有将其放入到Variable函数中才具有求到功能。
    在这里插入图片描述
  2. 在该版本之后Variable函数的功能直接并入到tensor中。
    在这里插入图片描述
  3. 主要需要学习的张量创建方法:

import torch
import numpy as np

# 通过 torch.tensor()创建
# 主要参数 data list或者np数组,dtype 数据类型,device 运行设备, requires_grad 是否计算梯度。
def tensor_create1():
    arr = np.ones((3,3))
    t = torch.tensor(data=arr,dtype=torch.float,device="cuda",requires_grad=True)
    print(t)

# 仅仅需要 传入 一个np数组即可
def tensor_create2():
    arr = np.ones((3,3))
    t = torch.from_numpy(arr)
    print(t)

# mean std 可以是向量和标量,所以有4种组合
def tensor_create3():
    mean = torch.tensor(1.0)
    std = torch.tensor(1.0)
    t_normal = torch.normal(mean, std)
    print("mean:{}\nstd:{}".format(mean, std))
    print(t_normal)

    mean1 = 1
    std1 = 1
    t_normal1 = torch.normal(mean1, std1,(3,3))
    print("mean:{}\nstd:{}".format(mean1, std1))
    print(t_normal1)
if __name__ == '__main__':
    tensor_create3()

由上述torch.normal()官方文档可知torch.normal()主要有以下4种传参方法。

  • (Tensor mean, Tensor std, *, torch.Generator generator, Tensor out)
  • (Tensor mean, float std, *, torch.Generator generator, Tensor out)
  • (float mean, Tensor std, *, torch.Generator generator, Tensor out)
  • (float mean, float std, tuple of ints size, *, torch.Generator generator, Tensor out, torch.dtype dtype, torch.layout layout, torch.device device, bool pin_memory, bool requires_grad)
    其中 torch.Generator 可以传入随时生成种子数和设备来控制normal()函数的随机和生成数据设备。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值