后缀排序
顾名思义,后缀排序是将字符串的后缀子串按照字典序排序的算法。
s
a
[
i
]
sa[i]
sa[i]表示排名为i的后缀的开头位置
r
a
n
k
[
i
]
rank[i]
rank[i]表示从i开始的后缀的排名
很显然 s a [ i ] sa[i] sa[i]和 r a n k [ i ] rank[i] rank[i]是就互逆的( s a [ t a n k [ i ] ] = i sa[tank[i]] = i sa[tank[i]]=i)
直接找出所有后缀再排序时间复杂就过高了
但我们可以发现字典序是先比较当前位,当前位不相同时,就按照当前位置排名,否则继续比较后面的。很显然,子串(这里没有限定为后缀)s[i ~ (i+p) ]的排名是对s[i ~(i + p +m)]的排名有影响(子串s[i ~(i + p +m)]的排名要先比较前m位,再比较后面的)。那s[i ~(i + p +m)]可以分为s[i ~ (i + p)]和s[(i+p+1) ~ (i+p+m)]两个部分。而且s[i ~ (i + p)]的优先级高于s[(i+p+1) ~ (i+p+m)],可以看做二级排序。
基数排序
对于任意一个串都可以分成两个子串,作二级排序来得到排名。那么,把分成的子串再分,分到只有一个字符时,顺序就很简单的可以得到。
如下图
代码
void RSort() {
for (int i = 0; i <= m; i ++) tax[i] = 0;
for (int i = 1; i <= n; i ++) tax[rank[tp[i]]] ++;
for (int i = 1; i <= m; i ++) tax[i] += tax[i-1];
for (int i = n; i >= 1; i --) SA[tax[rank[tp[i]]] --] = tp[i];
} //基数排序,把新子串排序。
int cmp(int *f, int x, int y, int w) { return f[x] == f[y] && f[x + w] == f[y + w]; }
//判断两个子串是否相同
void Suffix() {
for (int i = 1; i <= n; i ++) rank[i] = a[i], tp[i] = i;
m = 127 ,RSort(); //一开始是以单个字符为单位,所以(m = 127)
for (int w = 1, p = 1, i; p < n; w += w, m = p) { //把子串长度翻倍,更新rank
//tp[i]此时表示第二关键字排名为i的,第一关键字的位置
for (p = 0, i = n - w + 1; i <= n; i ++) tp[++ p] = i;
//(n - w + 1) ~ n开始的后缀作为第一关键字时,没有第二关键字(即为0),排在前面
for (i = 1; i <= n; i ++) if (SA[i] > w) tp[++ p] = SA[i] - w;
// 当排名为i的后缀的开始位置在w后面,那么这个后缀可以作为第二后缀,
//那么它能作为它的第一关键字的数应该是从SA[i] - w 开始的
//更新SA值,并用tp暂时存下上一轮的rank(用于cmp比较)
RSort(), swap(rank, tp), rank[SA[1]] = p = 1;
//用已经完成的SA来更新与它互逆的rank,并离散rank
for (i = 2; i <= n; i ++) rank[SA[i]] = cmp(tp, SA[i], SA[i - 1], w) ? p : ++ p;
}
//离散:把相等的字符串的rank设为相同。
}