Pycharm链接远程服务器GPU跑深度学习模型

我们在学习深度学习时,常常会遇到自己笔记本电脑性能不够,显卡性能低,在运行深度学习项目的时候很浪费时间。如果实验室有可用于深度学习的服务器的话,会大大减少代码执行时间,服务器上的GPU算力一般都很高。

本文主要介绍如何使用本地电脑Pycharm 远程连接服务器,进行深度学习,调用GPU。

一、服务器端

服务器:服务器并不是什么高大尚的东西,他也就是一台Linux系统的电脑,一般都装有Ubuntu系统。推荐学习一些简单的Linux命令。

使用服务器前,确保服务器是开着的,如果需要往服务器上下载东西,比如安装Python包等,需要确保服务器已经联网,否则安装环境包时会出错,无法访问地址。

二、本地Pycharm设置

将项目代码链接到服务器

在Pycharm中打开深度学习项目代码,点击上方工具栏Tools→Deployment→Configureation.

在这里插入图片描述

点击+,选择SFTP,输入服务器名称(随意),点击OK,就创建好了

在这里插入图片描述

点击SSH configuration右侧 … 进行服务器参数配置
在这里插入图片描述

点击加号,在右侧填写远程服务器的HOST IP地址,User name ,password,填写完毕后点击Test connection,弹出连接成功即可,表明连接到远程服务器了。点击Apply

在这里插入图片描述

然后继续在Deployment中进行其他参数配置,点击Mapping→Deployment path,在此选择服务器上的项目代码路径。(注意:推荐提前将本地代码及数据上传到服务器中,记住路径位置),选择完毕后点击Ok。

注:使用远程服务器运行代码时,服务器上一定要有项目代码、数据,只在自己电脑本地有是不行的。服务器只能读取服务器上的文件。我们只是 借用自己电脑Pycharm 以可视化的形式 操作服务器上的文件数据。

配置完成后,记得勾选Automatic upload,这样你在pycharm中修改代码时,远程服务器上的代码文件也会同步被修改。

在这里插入图片描述

配置解释器运行环境

上述已经将本地代码和远程服务器建立连接了,接下来配置解释器运行环境。

点击右下角,选择Interpreter settings。

在这里插入图片描述

点击Add 添加新环境

在这里插入图片描述

选择 SSH Interpreter,找到刚才创建好的SSH链接,并选择。如有提示,点击Move即可。

在这里插入图片描述

点击next,在此处进行环境配置。 Interpreter选择服务器上的环境路径。

Sync folders选择服务器上的项目代码路径。

选择完点击OK,Finish

在这里插入图片描述

点击Apply即可

在这里插入图片描述

点击右侧Remote Host即可看到远程服务器的文件。至此就配置链接原创服务器完成。

至此,代码就能成功在服务器中执行了,并且调用服务器的GPU算力。

### 如何在 PyCharm 中配置和运行深度学习项目 #### 安装合适的 PyCharm 版本 对于开发需求,安装来自官方渠道的PyCharm社区版已经足够满足日常编程工作[^1]。 #### 设置远程 Python 解释器 为了使本地机器上的 PyCharm 能够利用远程服务器的强大计算资源来执行代码,需设置远程 Python 解释器。具体操作是在 PyCharm 的 `File` -> `Settings` -> `Project:xxx` -> `Python Interpreter` 下点击齿轮图标并选择 `Add...` ,随后选取 `SSH Interpreter` 来指定位于远程主机内的 Python 解释器路径,并完成相应配置以确保本地工程目录能正确映射至远端位置[^3]。 #### 运行调试配置 当一切准备就绪后,在项目的 Run/Debug Configurations 页面内找到 Configuration 面板下的 Python Interpreter 项,确认所选即为之前设定好的远程环境。此时启动程序将会看到日志显示其正在远程服务端运作中[^2]。 ```python # 示例:简单的 TensorFlow 测试脚本用于验证配置是否成功 import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) predictions = model(x_train[:1]).numpy() loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值