批量修改YOLO格式的标注类别 假如你有一个YOLO格式的数据集,标注类别为0,1,2,3四个类别标签。如果你想删除标签1,只保留0,2,3类别的标注信息,或者想将标签0和标签1合并为标签1,只剩下标签1,2,3。等类似的标签修改问题。
Remote Sensing(MDPI)期刊投稿历程(CV方向) 期刊官网:https://www.mdpi.com/journal/remotesensing影响因子(2024):4.2分区:JCR:Q1。中科院二区版面费:2700瑞士法郎(约21000rmb)
Pycharm链接远程服务器GPU跑深度学习模型 注:使用远程服务器运行代码时,服务器上一定要有项目代码、数据,只在自己电脑本地有是不行的。点击加号,在右侧填写远程服务器的HOST IP地址,User name ,password,填写完毕后点击Test connection,弹出连接成功即可,表明连接到远程服务器了。使用服务器前,确保服务器是开着的,如果需要往服务器上下载东西,比如安装Python包等,需要确保服务器已经联网,否则安装环境包时会出错,无法访问地址。点击+,选择SFTP,输入服务器名称(随意),点击OK,就创建好了。
EndNote导入参考文献,期刊名称无法识别,丢失Journal 解决方法也非常简单,修改当前版本EndNote软件的导入过滤器文件即可。点击直达官方下载地址中,下载最新的Filter即可。下载好后,进入本地EndNote软件的安装路径,并找到其中的Filters文件夹。将下载好的 EndNote Import.enf 文件 复制粘贴到Filters文件夹中,进行替换即可。最后,我们再双击.enw等格式的文献数据库导入文件,可以看到导入的参考文献就可以正常显示期刊名称了,且作者列表中也不会再出现期刊名称了。
Python直方图处理(直方图均衡化、规定化) ② GML单映射的实现原理是:首先计算原始图像和规定目标的累计直方图(将统计直方图归一化到(0, 1)之间,再计算累计概率分布函数),然后对原图像的累计直方图进行分组:先在原图像的累计直方图中找到与目标直方图的每个灰度值距离最近的点(如下图的所示的 0→3;① SML单映射的实现原理是:首先计算原始图像和规定目标的累计直方图(将统计直方图归一化到(0, 1)之间,再计算累计概率分布函数),然后对原图像的累计直方图寻求一一映射关系(每个灰度值映射到与目标的累计直方图最近的点)。
YOLOV5目标检测模型识别人脸 GPU(图像处理器)和CPU(中央处理器)在设计上的主要差异在于GPU有更多的运算单元(如图中绿色的ALU),而Control和Cache单元不如CPU多,这是因为GPU在进行并行计算的时候每个运算单元都是执行相同的程序,而不需要太多的控制。首先是模型的训练轮次epochs,为了节省时间且能反应计算机性能和结果准确度,我们选择100轮,batch-size就是一次往GPU塞多少张图片了,决定了显存占用大小,workers指数据装载时cpu所使用的线程数。箭头1中需要将训练和测试的数据集的路径填上;
利用Anaconda安装pytorch深度学习环境---免额外安装CUDA和cudnn 打开pytorch的官网https://pytorch.org/,我们通过驱动检测到我的显卡为 MX250,最高支持cuda11.7版本,所以我们选择cuda11.3版本的cuda,然后将下面红色框框中的内容复制下来,不要把后面的-c pytorch -c conda-forge复制下来,因为这样运行就是还是在国外源下载,这样就会很慢。之前我们在利用GPU进行深度学习的时候,都要去NVIDIA的官网下载CUDA的安装程序和cudnn的压缩包,然后再进行很繁琐的系统环境配置。已经亲自尝试过了,是可以的。
Linux服务器命令(查看、杀死进程) 查看显卡占用进程号:fuser -v /dev/nvidia0。正常杀死进程: kill -15 pid号。强制杀死进程: kill -9 pid号。查看显卡占用:nvitop。
YOLOv8添加CBAM注意力机制(模型改进) CBAM就是将通道注意力模块和空间注意力模块的输出特征逐元素相乘,得到最终的注意力增强特征。这个增强的特征将用作后续网络层的输入,以在保留关键信息的同时,抑制噪声和无关信息。原文实验证明先进行通道维度的整合,再进行空间维度的整合,模型效果更好。CBAM的主要目标是通过在CNN中引入通道注意力和空间注意力来提高模型的感知能力,从而在不增加网络复杂性的情况下改善性能。这两个模块可以分别嵌入到CNN中的不同层,以增强特征表示。然后在下图中指定位置,加入‘CBAM’的引用。
YOLOv8训练自定义数据集模型 首先找到,ultralytocs/cfg/default.yaml文件,修改文件中的相关配置,如:task:detect mode:train model:模型文件yolov8n.yaml的位置 data: 数据文件data.yaml的位置 以及一些基本的参数设置,epochs 、batch 、workers、imgsz、device等。.whl进行安装,安装后进行检测,print(torch. --vison-- ).yaml是从0重新训练一个新的模型,自定义模型。