CV灰太狼
码龄6年
关注
提问 私信
  • 博客:36,952
    动态:2
    36,954
    总访问量
  • 24
    原创
  • 40,245
    排名
  • 248
    粉丝
  • 0
    铁粉
  • 学习成就

个人简介:专注于计算机视觉、目标检测、大模型,多模态方向 收藏永不停止,学习从未开始。。。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:河南省
  • 加入CSDN时间: 2018-11-20
博客简介:

weixin_43752269的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    342
    当月
    36
个人成就
  • 获得280次点赞
  • 内容获得40次评论
  • 获得469次收藏
  • 代码片获得2,508次分享
创作历程
  • 24篇
    2024年
成就勋章
兴趣领域 设置
  • Python
    python
  • Java
    java
  • 人工智能
    目标检测图像处理
  • 嵌入式
    嵌入式硬件
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

YOLO格式txt文件数据增强,水平/垂直翻转、明亮度、饱和度、高斯、椒盐噪声等

【代码】YOLO格式txt文件数据增强,水平/垂直翻转、明亮度、饱和度、高斯、椒盐噪声等。
原创
发布博客 前天 17:22 ·
135 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

数据集格式转换-json格式转YOLO(txt格式)

【代码】数据集格式转换-json格式转YOLO(txt格式)
原创
发布博客 2024.11.07 ·
100 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

批量修改YOLO格式的标注类别

假如你有一个YOLO格式的数据集,标注类别为0,1,2,3四个类别标签。如果你想删除标签1,只保留0,2,3类别的标注信息,或者想将标签0和标签1合并为标签1,只剩下标签1,2,3。等类似的标签修改问题。
原创
发布博客 2024.10.24 ·
325 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

Remote Sensing(MDPI)期刊投稿历程(CV方向)

期刊官网:https://www.mdpi.com/journal/remotesensing影响因子(2024):4.2分区:JCR:Q1。中科院二区版面费:2700瑞士法郎(约21000rmb)
原创
发布博客 2024.08.28 ·
4060 阅读 ·
9 点赞 ·
7 评论 ·
12 收藏

VOC格式(XML)转YOLO格式(txt)

【代码】VOC格式(XML)转YOLO格式(txt)
原创
发布博客 2024.07.16 ·
447 阅读 ·
4 点赞 ·
0 评论 ·
10 收藏

Python实现批量缩放图片分辨率Resize

【代码】Python实现批量缩放图片分辨率Resize。
原创
发布博客 2024.07.16 ·
197 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

Python实现图片批量裁剪

【代码】Python实现图片批量裁剪。
原创
发布博客 2024.07.16 ·
299 阅读 ·
3 点赞 ·
0 评论 ·
0 收藏

视频截取帧,视频转图片

【代码】视频截取帧,视频转图片。
原创
发布博客 2024.07.15 ·
150 阅读 ·
2 点赞 ·
0 评论 ·
0 收藏

YOLOv8可视化界面,web网页端检测

YOLOv8可视化界面,web网页端检测。支持图片检测,视频检测,摄像头检测等,支持检测、分割等多种任务,实时显示检测画面。支持自定义数据集,计数,……
原创
发布博客 2024.06.14 ·
779 阅读 ·
13 点赞 ·
2 评论 ·
0 收藏

YOLOv8可视化界面PYQT5

yolov8,可视化界面pyqt。支持图片检测,视频检测,摄像头检测等,实时显示检测画面。支持自定义数据集,计数,fps展示……,即插即用,无需更改太多代码
原创
发布博客 2024.06.13 ·
769 阅读 ·
6 点赞 ·
1 评论 ·
2 收藏

Pycharm链接远程服务器GPU跑深度学习模型

注:使用远程服务器运行代码时,服务器上一定要有项目代码、数据,只在自己电脑本地有是不行的。点击加号,在右侧填写远程服务器的HOST IP地址,User name ,password,填写完毕后点击Test connection,弹出连接成功即可,表明连接到远程服务器了。使用服务器前,确保服务器是开着的,如果需要往服务器上下载东西,比如安装Python包等,需要确保服务器已经联网,否则安装环境包时会出错,无法访问地址。点击+,选择SFTP,输入服务器名称(随意),点击OK,就创建好了。
原创
发布博客 2024.05.07 ·
2148 阅读 ·
11 点赞 ·
2 评论 ·
47 收藏

EndNote导入参考文献,期刊名称无法识别,丢失Journal

解决方法也非常简单,修改当前版本EndNote软件的导入过滤器文件即可。点击直达官方下载地址中,下载最新的Filter即可。下载好后,进入本地EndNote软件的安装路径,并找到其中的Filters文件夹。将下载好的 EndNote Import.enf 文件 复制粘贴到Filters文件夹中,进行替换即可。最后,我们再双击.enw等格式的文献数据库导入文件,可以看到导入的参考文献就可以正常显示期刊名称了,且作者列表中也不会再出现期刊名称了。
原创
发布博客 2024.04.21 ·
2769 阅读 ·
13 点赞 ·
1 评论 ·
12 收藏

Python直方图处理(直方图均衡化、规定化)

② GML单映射的实现原理是:首先计算原始图像和规定目标的累计直方图(将统计直方图归一化到(0, 1)之间,再计算累计概率分布函数),然后对原图像的累计直方图进行分组:先在原图像的累计直方图中找到与目标直方图的每个灰度值距离最近的点(如下图的所示的 0→3;① SML单映射的实现原理是:首先计算原始图像和规定目标的累计直方图(将统计直方图归一化到(0, 1)之间,再计算累计概率分布函数),然后对原图像的累计直方图寻求一一映射关系(每个灰度值映射到与目标的累计直方图最近的点)。
原创
发布博客 2024.04.08 ·
4242 阅读 ·
49 点赞 ·
0 评论 ·
60 收藏

YOLOV5目标检测模型识别人脸

GPU(图像处理器)和CPU(中央处理器)在设计上的主要差异在于GPU有更多的运算单元(如图中绿色的ALU),而Control和Cache单元不如CPU多,这是因为GPU在进行并行计算的时候每个运算单元都是执行相同的程序,而不需要太多的控制。首先是模型的训练轮次epochs,为了节省时间且能反应计算机性能和结果准确度,我们选择100轮,batch-size就是一次往GPU塞多少张图片了,决定了显存占用大小,workers指数据装载时cpu所使用的线程数。箭头1中需要将训练和测试的数据集的路径填上;
原创
发布博客 2024.04.07 ·
2316 阅读 ·
6 点赞 ·
2 评论 ·
22 收藏

利用Anaconda安装pytorch深度学习环境---免额外安装CUDA和cudnn

打开pytorch的官网https://pytorch.org/,我们通过驱动检测到我的显卡为 MX250,最高支持cuda11.7版本,所以我们选择cuda11.3版本的cuda,然后将下面红色框框中的内容复制下来,不要把后面的-c pytorch -c conda-forge复制下来,因为这样运行就是还是在国外源下载,这样就会很慢。之前我们在利用GPU进行深度学习的时候,都要去NVIDIA的官网下载CUDA的安装程序和cudnn的压缩包,然后再进行很繁琐的系统环境配置。已经亲自尝试过了,是可以的。
原创
发布博客 2024.04.07 ·
1195 阅读 ·
15 点赞 ·
0 评论 ·
14 收藏

Linux服务器命令(查看、杀死进程)

查看显卡占用进程号:fuser -v /dev/nvidia0。正常杀死进程: kill -15 pid号。强制杀死进程: kill -9 pid号。查看显卡占用:nvitop。
原创
发布博客 2024.04.06 ·
405 阅读 ·
4 点赞 ·
0 评论 ·
0 收藏

YOLOv5、v8数据增强(随机裁剪、平移、改变亮度、加噪声、旋转、镜像)

直接修改上述内容即可直接使用。
原创
发布博客 2024.04.04 ·
3467 阅读 ·
15 点赞 ·
9 评论 ·
65 收藏

YOLOv8添加CBAM注意力机制(模型改进)

CBAM就是将通道注意力模块和空间注意力模块的输出特征逐元素相乘,得到最终的注意力增强特征。这个增强的特征将用作后续网络层的输入,以在保留关键信息的同时,抑制噪声和无关信息。原文实验证明先进行通道维度的整合,再进行空间维度的整合,模型效果更好。CBAM的主要目标是通过在CNN中引入通道注意力和空间注意力来提高模型的感知能力,从而在不增加网络复杂性的情况下改善性能。这两个模块可以分别嵌入到CNN中的不同层,以增强特征表示。然后在下图中指定位置,加入‘CBAM’的引用。
原创
发布博客 2024.04.04 ·
4377 阅读 ·
19 点赞 ·
3 评论 ·
88 收藏

YOLOv8训练自定义数据集模型

首先找到,ultralytocs/cfg/default.yaml文件,修改文件中的相关配置,如:task:detect mode:train model:模型文件yolov8n.yaml的位置 data: 数据文件data.yaml的位置 以及一些基本的参数设置,epochs 、batch 、workers、imgsz、device等。.whl进行安装,安装后进行检测,print(torch. --vison-- ).yaml是从0重新训练一个新的模型,自定义模型。
原创
发布博客 2024.04.02 ·
1852 阅读 ·
39 点赞 ·
0 评论 ·
27 收藏

(训练集、验证集、测试集)数据集划分(YOLO为例)

只需修改代码最后四行:所有的图片路径、YOLO格式的标签路径、最终划分后的文件夹目录、以及划分比例8:1:1。
原创
发布博客 2024.04.02 ·
450 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏
加载更多