力扣(LeetCode) 剑指Offer 14-Ⅰ

给定长度为n的绳子,将其剪成m段整数长度,求最大乘积。通过动态规划和数学方法解决,避免子问题重复计算。当n≤3时返回n-1,否则根据n除以3的整数部分a和余数b决定最大乘积:b=0时返回3^a,b=1时返回3^(a-1)×4,b=2时返回3^a×2。
摘要由CSDN通过智能技术生成

题目描述

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]*k[1]*…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

  • 示例:

输入:2
输出:1
解释: 2 = 1 + 1, 1 × 1 = 1

题目思路

最开始看到题目就想到用动态规划,但是一时间太久没复习跟课上的钢条切割混淆了(那个是求怎样切割钢条以求最大价钱),与这题完全不一样。
使用动态规划的解法,主要是cut(n)=max(i*(n-i),i*cut(n-i)). 即绳子切成两段后,要不要再继续切割。
同时,这里由于求解过程出现了树形结构,涉及到了子问题的解被重复使用。于是采用自底向上的方法,用一个数组记录子问题的解,以减小时间。

class Solution {
    public int cuttingRope(int n) {
        int [] ans = new int[n+1];
        ans[2]=1;
        for(int i=3;i<n+1;i++){
            for(int j=1;j<i;j++){
                ans[i] = Math.max(ans[i],Ma
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值