题目描述
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0]*k[1]*…*k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
- 示例:
输入:2
输出:1
解释: 2 = 1 + 1, 1 × 1 = 1
题目思路
最开始看到题目就想到用动态规划,但是一时间太久没复习跟课上的钢条切割混淆了(那个是求怎样切割钢条以求最大价钱),与这题完全不一样。
使用动态规划的解法,主要是cut(n)=max(i*(n-i),i*cut(n-i)). 即绳子切成两段后,要不要再继续切割。
同时,这里由于求解过程出现了树形结构,涉及到了子问题的解被重复使用。于是采用自底向上的方法,用一个数组记录子问题的解,以减小时间。
class Solution {
public int cuttingRope(int n) {
int [] ans = new int[n+1];
ans[2]=1;
for(int i=3;i<n+1;i++){
for(int j=1;j<i;j++){
ans[i] = Math.max(ans[i],Ma