I Hate It HDU - 1754 (单点修改维护区间最大值)(树状数组与线段树)

本文介绍了一种在大规模数据集中快速查询和更新学生分数的算法。通过树状数组和线段树两种方法,实现了对指定区间内最高分数的高效查询及特定学生分数的更新。适用于学校成绩管理系统中频繁的分数查询与修改需求。

很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。

不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
Input
本题目包含多组测试,请处理到文件结束。
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取’Q’或’U’) ,和两个正整数A,B。
当C为’Q’的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为’U’的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
Output
对于每一次询问操作,在一行里面输出最高成绩。
Sample Input
5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5
Sample Output
5
6
5
9

Hint
Huge input,the C function scanf() will work better than cin

树状数组做法

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <cctype>
#include <cstdio>
#include <bitset>
#include <string>
#include <vector>
#include <complex>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int a[200010],c[200010];
int lowbit(int x)
{
    return x&(-x);
}
void change(int x,int d)
{
    a[x]=d;
    for(int i=x;i<=n;i+=lowbit(i))
    {
        c[x]=d;
        for(int j=1;j<lowbit(i);j<<=1)
           c[i]=max(c[i],c[i-j]);
    }
}
int ask(int l,int r)
{
    int ans=0;
    while(1)
    {
        ans=max(ans,a[r]);
        if(l==r)break;
        for(r-=1;r-lowbit(r)>=l;r-=lowbit(r))
            ans=max(ans,c[r]);
    }
    return ans;
}
int main()
{
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
    string s;int x,y;
    int k;
    while(cin>>n>>m)
    {
        memset(c,0,sizeof(c));
        for(int i=1;i<=n;i++)
        {
            cin>>k;
            a[i]=k;c[i]=k;
            for(int j=1;j<lowbit(i);j<<=1)
                c[i]=max(c[i],c[i-j]);
        }
        while(m--)
        {
            cin>>s>>x>>y;
            if(s[0]=='U')change(x,y);
            else cout<<ask(x,y)<<endl;
        }
    }
	return 0;
}

线段树做法

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <deque>
#include <queue>
#include <stack>
#include <cctype>
#include <cstdio>
#include <bitset>
#include <string>
#include <vector>
#include <complex>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int a[200010],tree[800010];
void build(int root,int l,int r)
{
    if(l==r){tree[root]=a[l];return;}
    int mid=(l+r)>>1;
    int lc=root*2;int rc=lc+1;
    build(lc,l,mid);
    build(rc,mid+1,r);
    tree[root]=max(tree[lc],tree[rc]);
}
void change(int p,int x,int l,int r,int root)
{
    if(l==r){tree[root]=x;return;}
    int mid=(l+r)>>1;
    int lc=root*2;int rc=lc+1;
    if(p<=mid)change(p,x,l,mid,lc);
    else change(p,x,mid+1,r,rc);
    tree[root]=max(tree[lc],tree[rc]);
}
int ask(int L,int R,int l,int r,int root)
{
    if(L<=l&&r<=R)return tree[root];
    int ans=0;
    int mid=(l+r)>>1;
    int lc=root*2;int rc=lc+1;
    if(L<=mid)ans=max(ans,ask(L,R,l,mid,lc));
    if(R>mid)ans=max(ans,ask(L,R,mid+1,r,rc));
    return ans;
}
int main()
{
    std::ios::sync_with_stdio(false);
    std::cin.tie(0);
    string s;
    int x,y;
    int k;
    while(cin>>n>>m)
    {
        for(int i=1;i<=n;i++)cin>>a[i];
        build(1,1,n);
        while(m--)
        {
            cin>>s>>x>>y;
            if(s[0]=='U')change(x,y,1,n,1);
            else cout<<ask(x,y,1,n,1)<<endl;
        }
    }
	return 0;
}

房屋网球场目标检测数据集 一、基础信息 • 数据集名称:房屋网球场目标检测数据集 • 图片数量: 训练集:273张图片 验证集:75张图片 测试集:92张图片 总计:440张图片 • 训练集:273张图片 • 验证集:75张图片 • 测试集:92张图片 • 总计:440张图片 • 分类类别: House(房屋):常见的住宅建筑类型。 TennisCourt(网球场):用于网球运动的专用场地。 • House(房屋):常见的住宅建筑类型。 • TennisCourt(网球场):用于网球运动的专用场地。 • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据来源:来源于航拍或相关图像数据集。 二、适用场景 • 城市规划土地管理:自动检测房屋和网球场,辅助城市发展分析和土地利用规划。 • 房地产评估开发:用于识别住宅建筑和体育设施,支持房产估值和项目规划。 • 体育设施监控:监控网球场的分布和状态,优化体育资源管理和维护。 • 航拍图像分析:适用于无人机或卫星图像中的目标检测,提升地理信息系统(GIS)和遥感应用效率。 三、数据集优势 • 标注精准可靠:采用YOLO格式标注,边界框定位准确,确保模型训练的有效性。 • 类别聚焦实用:专注于房屋和网球场两个常见类别,覆盖住宅和娱乐设施,具有实际应用价值。 • 数据划分合理:提供训练集、验证集和测试集,数据量分配科学,支持模型开发评估。 • 兼容性强:标注格式兼容主流深度学习框架,如YOLO、PyTorch等,便于直接使用和集成。 • 任务适配性高:专为目标检测任务设计,帮助构建高效、准确的AI模型,适用于多种现实场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值