示例 1:
输入:tokens = [“2”,“1”,"+",“3”,"*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
逆波兰表达式:
逆波兰表达式是一种后缀表达式,所谓后缀就是指算符写在后面。
平常使用的算式则是一种中缀表达式,如 ( 1 + 2 ) * ( 3 + 4 ) 。
该算式的逆波兰表达式写法为 ( ( 1 2 + ) ( 3 4 + ) * ) 。
逆波兰表达式主要有以下两个优点:
去掉括号后表达式无歧义,上式即便写成 1 2 + 3 4 + * 也可以依据次序计算出正确结果。
算法原理:
适合用栈操作运算:遇到数字则入栈;遇到算符则取出栈顶两个数字进行计算,并将结果压入栈中。
class Solution {
public int evalRPN(String[] tokens) {
Stack<Integer> stack=new Stack<>();
int res=0;
for(int i=0;i<tokens.length;i++){
if(isNumber(tokens[i])){
stack.push(Integer.parseInt(tokens[i]));
}
else{
int right=stack.pop();
int left=stack.pop();
int res0=0;
if(tokens[i].equals("+")){
res0=left+right;
}
else if(tokens[i].equals("-")){
res0=left-right;
}
else if(tokens[i].equals("*")){
res0=left*right;
}
else if(tokens[i].equals("/")){
res0=left/right;
}
stack.push(res0);
}
}
return stack.peek();
}
public boolean isNumber(String s){
return !(s.equals("+")||s.equals("-")||s.equals("*")||s.equals("/"));
}
}