【Pytorch】cmd查看pytorch版本信息

查看pytorch版本信息

打开命令提示符
import torch
print(torch.__ version __) #注意是两个下划线
在这里插入图片描述

### 查看 PyTorch 版本及其 CUDA 支持的方法 可以通过 Python 脚本来检查当前环境中的 PyTorch 版本以及是否启用了 CUDA(GPU)支持。以下是具体方法: #### 方法一:通过交互式命令行工具 打开 CMD 或终端,运行以下命令启动 Python 交互模式: ```bash python ``` 接着,在 Python 环境中执行以下代码片段以获取所需信息: ```python import torch print(f"PyTorch Version: {torch.__version__}") # 打印 PyTorch版本号 print(f"CUDA Available: {torch.cuda.is_available()}") # 是否有可用的 CUDA 设备 print(f"CUDA Version: {torch.version.cuda}") # 当前使用的 CUDA 版本 print(f"CUDNN Version: {torch.backends.cudnn.version()}") # CUDNN 库的版本 (如果适用) print(f"Device Name: {torch.cuda.get_device_name(0)}") # 获取 GPU 名称 (如果有多个设备,则需指定索引) ``` 上述脚本能够提供详细的 PyTorch 配置信息,包括但不限于版本号、CUDA 支持状态和具体的硬件名称。 --- #### 方法二:直接在 CMD 中运行单行命令 如果不希望进入交互式 Python 模式,也可以通过 `python` 命令一次性完成检测操作: ```bash python -c "import torch; print('PyTorch Version:', torch.__version__); print('CUDA Available:', torch.cuda.is_available()); print('CUDA Version:', torch.version.cuda); print('CUDNN Version:', torch.backends.cudnn.version() if torch.cuda.is_available() else 'Not Supported');" ``` 此命令会在同一行打印出所有必要的配置详情[^1]。 --- #### 注意事项 - 如果系统未正确安装 NVIDIA 显卡驱动程序或者 CUDA 工具包不匹配,可能导致 `torch.cuda.is_available()` 返回 False 即使显卡存在。 - 使用 `nvidia-smi` 命令可以进一步确认系统的 CUDA 和 GPU 运行状况[^3]: ```bash nvidia-smi ``` --- ### 结论 以上两种方法均可有效验证 PyTorch版本及 CUDA 支持情况。对于更复杂的调试需求,建议结合官方文档或社区资源深入排查可能存在的兼容性问题[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值