机械波半波损失原理分析英语论文

The Analysis of Half-wave Loss for Mechanical Wave

Abstract:

When the incident wave propagates from sparse medium to dense medium, there may be a phase mutation for the reflection wave. Since the mutation is equal to π \pi π, which corresponds to a half-wavelength change, it is called a half-wave loss. In this essay, the mechanism of the half-wave loss and the phase mutation is elaborated.

Key words:

incident wave; half-wave loss; transmission wave; reflection wave; mechanical wave

Introduction

Wave is an important motion form in nature. Wave exists in many science and technology fields and is closely associated with human being. Wave can be separated into mechanical wave, electromagnetic wave and matter wave. Although the natures of different forms of waves are different, they follow the same principle as waves.

For waves propagating between two different medium, it is significant to determine whether there will be a half-wave loss at the interface. The half-wave loss problem for oblique incidence and electromagnetic wave is too sophisticated to discuss, so only the normal incidence of mechanical waves is discussed in this essay.

The Nature of Half-wave Loss for Mechanical Waves

Suppose a plane harmonic wave $y_i=Acos[\omega(t-\frac{x}{v_1})] $ propagates from medium 1 to medium 2, whose direction is perpendicular to the interface. The reflection wave and the transmission wave are y r = B c o s [ ω ( t − x v 1 ) ] y_r=Bcos[\omega(t-\frac{x}{v_1})] yr=Bcos[ω(tv1x)] and y t = C c o s [ ω ( t − x v 2 ) ] y_t=Ccos[\omega(t-\frac{x}{v_2})] yt=Ccos[ω(tv2x)]. If B and C have the same sign with A, the incident wave, reflection wave and transmission wave are in phase, which means no half-wave loss occurs. If B and C have the opposite sign to A, the incident wave, reflection wave and transmission wave are out of phase, which means half-wave loss occurs.

The mechanical wave in medium 1:
(1) y 1 = y i + y r = A c o s [ ω ( t − x v 1 ) ] + B c o s [ ω ( t + x v 1 ) ] y_1=y_i+y_r=Acos[\omega(t-\frac{x}{v_1})]+Bcos[\omega(t+\frac{x}{v_1})]\tag{1} y1=yi+yr=Acos[ω(tv1x)]+Bcos[ω(t+v1x)](1)
The mechanical wave in medium 2:
(2) y 2 = y t = C c o s [ ω ( t − x v 2 ) ] y_2=y_t= Ccos[\omega(t-\frac{x}{v_2})]\tag{2} y2=yt=Ccos[ω(tv2x)](2)
If there is no sliding and separation between the two medium, the displacement of waves from the two sides should be the same, so as the stress:
(3) y 1 ( 0 , t ) = y 2 ( 0 , t ) y_1(0,t)=y_2(0,t)\tag{3} y1(0,t)=y2(0,t)(3)

(4) G 1 ∂ y 1 ( 0 , t ) ∂ x = G 2 ∂ y 2 ( 0 , t ) ∂ s G_1\frac{\partial y_1(0,t)}{\partial x}=G_2\frac{\partial y_2(0,t)}{\partial s}\tag{4} G1xy1(0,t)=G2sy2(0,t)(4)

( G 1 G_1 G1 and G 2 G_2 G2 are the elastic shear modulus of medium 1 and medium 2 respectively)

Substitute (1) (2) into (3) (4), we have:
(5) A + B = C A+B=C\tag{5} A+B=C(5)

(6) G 1 ( A v 1 − B v 2 ) = G 2 C v 2 G_1(\frac{A}{v_1}-\frac{B}{v_2})=G_2\frac{C}{v_2}\tag{6} G1(v1Av2B)=G2v2C(6)

Since v 1 = G 1 ρ 1 v_1=\sqrt{\frac{G_1}{\rho_1}} v1=ρ1G1 and v 2 = G 2 ρ 2 v_2=\sqrt{\frac{G_2}{\rho_2}} v2=ρ2G2 ( ρ \rho ρ is the density of the medium), from (5) and (6), we have:
(7) B = ρ 1 v 1 − ρ 2 v 2 ρ 1 v 1 + ρ 2 v 2 A B=\frac{\rho_1v_1-\rho_2v_2}{\rho_1v_1+\rho_2v_2}A\tag{7} B=ρ1v1+ρ2v2ρ1v1ρ2v2A(7)

(8) C = 2 ρ 1 v 1 ρ 1 v 1 + ρ 2 v 2 A C=\frac{2\rho_1v_1}{\rho_1v_1+\rho_2v_2}A\tag{8} C=ρ1v1+ρ2v22ρ1v1A(8)

From (8) we can conclude that C and A always have the same sign, so the transmission wave and the incident wave are always in phase.

Define the product of the density and the velocity of waves in a medium to be the wave resistance ( z = ρ v z=\rho v z=ρv) and the medium with bigger wave resistance is dense medium and the medium with smaller wave resistance is sparse medium. From (7) we can conclude that:

If z 1 > z 2 z_1>z_2 z1>z2, which means wave propagate from dense medium to sparse medium, B and A always have the same sign, the reflection wave and the incident are always in phase and there is no half-wave loss.

If z 1 &lt; z 2 z_1&lt;z_2 z1<z2, which means wave propagate from sparse medium to dense medium, B and A always have the opposite sign, the reflection wave and the incident are always out of phase and there is a half-wave loss.

The Two Special Conditions for Standing Waves

Fixed End

If one side of a waving rope is fixed to a wall, then we call the interface is the fixed end, which means the wave resistance of medium 2 is much bigger than medium 1 ( z 2 → ∞ z_2\rightarrow\infty z2).

From (7), B=-A, so:
y 1 = y i + y r = A c o s [ ω ( t − x v 1 ) ] − A c o s [ ω ( t + x v 1 ) ] = 2 A s i n ( ω v 1 x ) s i n ( ω t ) y_1=y_i+y_r=Acos[\omega(t-\frac{x}{v_1})]-Acos[\omega(t+\frac{x}{v_1})]=2Asin(\frac{\omega}{v_1}x)sin(\omega t) y1=yi+yr=Acos[ω(tv1x)]Acos[ω(t+v1x)]=2Asin(v1ωx)sin(ωt)
The wave in medium 1 is a standing wave. At the interface(x=0), the amplitude is 0. So there is a node at the interface.

Free End

If the interface is the free end which means the wave resistance of medium 2 is 0 ( z 2 → 0 z_2\rightarrow 0 z20).

From (7), B=A, so:
y 1 = y i + y r = A c o s [ ω ( t − x v 1 ) ] + A c o s [ ω ( t + x v 1 ) ] = 2 A c o s ( ω v 1 x ) c o s ( ω t ) y_1=y_i+y_r=Acos[\omega(t-\frac{x}{v_1})]+Acos[\omega(t+\frac{x}{v_1})]=2Acos(\frac{\omega}{v_1}x)cos(\omega t) y1=yi+yr=Acos[ω(tv1x)]+Acos[ω(t+v1x)]=2Acos(v1ωx)cos(ωt)
The wave in medium 1 is a standing wave. At the interface(x=0), the amplitude is 2A. So there is an antinode at the interface.

Conclusion

For normal incidence of mechanical waves, half-wave loss occurs when the incident wave propagates from sparse medium to dense medium. If the interface is a fixed end, a standing wave occurs and the interface is a node. If the interface is a free end, a standing wave occurs and the interface is an antinode. In general cases, if the interface is neither a fixed end nor a free end, the magnitudes of the incident wave and the reflection wave are not the same, so there will not be a standing wave.

Reference

[1]MeiYan,KangDongmei.Nature of Half-wave Loss[J].Journal of Changchun Normal University, 2006(12): 25-29.

[2]DingGuijun.The Reflection,Transmission and Half-wave Loss of Mechanical Wave[J].University Physics,2018,37(04):8-10+15.

[3]ZhangSanhui.University Physics[M].3rd edition,Beijing:Tsinghua University Press,2000,81.

[4]ZuoWukui,Zhouhuaigong.Formation and Mechanism Analysis of Half-wave Loss[J].Physics Bulletin,2019(01):33-35.

[5]Douglas C. Giancoli[M].3rd edition,Beijing:High Education Press,2004,345.

[6]MoWenling.Concise University Physics[M].Beijing:Peking University Press,2005,128.

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值