验证集准确率一直不变

在进行三类别的图像分类任务时,遇到准确率停滞在0.7及UF1、UAR指标异常的情况。尝试了调整数据集输入方式和应用数据增强技术未见明显效果。最终发现,将验证集的shuffle设置为True显著改善了模型表现,这表明数据集的顺序对模型训练有重要影响。
摘要由CSDN通过智能技术生成

目前跑了很久  准确率一直在0.7左右徘徊,并且3种类别的图像分类,UF1,UAR总是只有一类有分数,其他都为0。网上查了是数据集原因,后来又各种调试数据集的输入方式,进行数据增强等,一直无果。

后来把验证集的shuffle改成了True !!!!!!好了!!!感谢万能的互联网!!!感谢给我提供这个思路的网友(不好意思 的确是忘了从哪里看的了)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值