tensorflow中有关tensorflow_datasets的简介

一、模型:tensorflow_datasets

tensorflow_datasets(tfds) 定义为用TensorFlow的一个数据集。
每个数据集被定义为一个 tfds.core.DatesetBuilder,这个tfds.core.DatesetBuilder包裹着logic下载数据集,和构建了一个输入管道,以及包含了数据集文件。
主要的库包括:
~tfds.builder: 取一个 tfds.core.DatasetBuilder
~tfds.load: 一个方便的方法去构建一个builder,下载数据,还有创建一个输入管道,返回一个 tf.data.Dataset.
这本我们主要讲解 tfds.builder 和 tfds.load

二、tfds.builder

作用:fetches a tfds.core.DatasetBuilder by string name

tfds.builder(
	name,
	**builder_init_kwargs
	)

参数:
name: 字符串类型, 是DatasetBuilderde的名字。 这个名字可以要么是BuilderConfig 的数据集“dataset_name” 或者 “dataset_name/config_name” 。为了方便,这个字符串可以包含逗号分割的参数对于builder来说。例如:"foo_bar/a = True, b =3“ 可以用FooBar 数据集通过关键参数a = True 和b = 3.
**builder_init_kwargs: 对DatasetBuilter的关键参数的dict。这将覆盖name中的关键参数。

返回:
一个 tfds.core.DatasetBuilder.

三、tfds.load

作用:导入已命名的数据集进入tf.data.Dataset

tfds.load(
	name,
	split = None,
	data_dir = None,
	batch_size = None,
	in_memory = None,
	shuffle_files = None,
	download = True,
	as_supervised = False,
	decoders = None,
	with_info = False,
	builder_kwargs = None,
	download_and_prepare_kwargs = None,
	as_dataset_kwargs = None,
	try_gcs = False
	)

如果split = None(默认), 返回数据集的所有拆分,否则,返回具体的切分。
load 是一个方便的方法,可以取得tfds.core.DatasetBuilder,可以选在DatasetBuilder.download_and_prepare(如果 download = True), 和DatasetBuilder.as_dataset。这相当于:

builder = tfds.builder(name, data_dir = data_dir, **builder_kwargs)
if download:
	builder.download_and_prepare(**download_)and_prepare_kwargs)
ds = builder.ad_dataset(
	split = split , as_supervised = as_supervised, **as_dataset_kwargs)
if with_info:
	return ds, builder.info
return ds
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值