【python】不规则字符串模糊匹配(fuzzywuzzy)

在日常的数据处理、文本分析或自然语言处理任务中,字符串匹配是一个常见需求。然而,由于拼写错误、格式差异、缩写等原因,精确匹配(Exact Matching)往往无法满足实际需求。此时,模糊匹配(Fuzzy Matching)成为一种更灵活的选择。

如下图:2个excel中保存了一些公园的不同数据,且只有公园名称能唯一标记一个公园。由于数据来源不同,公园的名称是不完全相同的,且不规则,难以使用正则表达式等精确匹配,此时就可将进行模糊匹配。
在这里插入图片描述


一、FuzzyWuzzy 简介

FuzzyWuzzy 由 SeatGeek 公司开发并开源,其核心算法基于 Levenshtein 距离(编辑距离),通过计算两个字符串之间需要经过多少次单字符编辑(增、删、改)才能变得相同,来衡量它们的相似性。FuzzyWuzzy 进一步优化了这一过程,并提供了多种预定义的相似度计算方式,适用于不同场景。

主要特点:

  1. 灵活性强:支持部分匹配、忽略顺序匹配、模糊分词匹配等。
  2. 简单易用:通过封装好的函数即可快速实现复杂匹配逻辑。
  3. 高效性:结合 python-Levenshtein 库可大幅提升计算速度。

二、核心功能与 API

FuzzyWuzzy 提供了多个相似度计算函数,以下是常用的几种方法:

  1. 简单匹配(Ratio)

    • 计算两个字符串的整体相似度,基于编辑距离。
    from fuzzywuzzy import fuzz
    similarity = fuzz.ratio("apple", "appel")  # 输出 86
    
  2. 部分匹配(Partial Ratio)

  • 适合比较长字符串与短字符串的匹配程度。例如,在长文本中搜索子串。
fuzz.partial_ratio("apple pie", "apple")  # 输出 100
  1. 词序无关匹配(Token Sort Ratio)
  • 先对字符串分词并按字母排序,再计算相似度。适合忽略单词顺序的场景。
fuzz.token_sort_ratio("apple orange", "orange apple")  # 输出 100
  1. 去重子集匹配(Token Set Ratio)

    • 进一步忽略重复词,专注于共有词汇的匹配。
    fuzz.token_set_ratio("apple apple", "apple")  # 输出 100
    
  2. 加权匹配(WRatio)

    • 综合多种策略,自动选择最佳匹配方式。
    fuzz.WRatio("apple pie", "apple pi")  # 输出 95
    

三、高级应用:从列表中提取最佳匹配

除了直接比较两个字符串,FuzzyWuzzy 的 process 模块支持从候选列表中快速找到与目标最接近的匹配项。

from fuzzywuzzy import process

choices = ["apple", "banana", "orange", "grape"]
result = process.extractOne("appel", choices, scorer=fuzz.WRatio)
print(result)  # 输出 ('apple', 86)

参数说明:

  • extractOne:返回列表中相似度最高的一个结果。
  • scorer:指定相似度计算函数(默认为 WRatio)。
  • 支持设置分数阈值(score_cutoff),过滤低质量匹配。

四、性能优化

FuzzyWuzzy 的默认实现可能较慢,尤其是在处理大规模数据时。通过以下方法可以提升性能:

  1. 安装 python-Levenshtein
    该库用 C 语言实现了 Levenshtein 算法,能显著加速计算:

    pip install python-Levenshtein
    
  2. 预处理数据

    • 去除字符串中的空格、标点符号。
    • 统一转换为小写。
    def preprocess(text):
        return text.lower().strip()
    
  3. 限制匹配范围
    根据业务逻辑缩小候选列表的范围(如按首字母分组)。


五、应用场景

  1. 数据清洗
    合并重复记录(如用户输入的不同地址变体)。
  2. 搜索引擎
    提升查询纠错能力(如“New Yrok” → “New York”)。
  3. 自然语言处理
    实体对齐、同义词扩展。
  4. 商业场景
    商品名称匹配、发票信息核对。

六、优缺点分析

优点:

  • 简单直观,适合快速实现模糊匹配需求。
  • 支持多种匹配策略,灵活应对不同场景。
  • 与 Python 生态集成良好(如 Pandas)。

缺点:

  • 对长文本效果较差(计算复杂度高)。
  • 默认依赖 python-Levenshtein,可能需额外安装。
  • 不直接支持非英文文本(需结合分词工具)。

替代方案

  1. difflib
    Python 标准库中的文本对比工具,功能较基础。
  2. RapidFuzz
    性能更优的 FuzzyWuzzy 替代品,API 兼容。
  3. Jellyfish
    支持更多字符串距离算法(如 Jaro-Winkler)。

七、完整代码示例

import pandas as pd
from fuzzywuzzy import process

# 定义需要去除的词
words_to_remove = ["NP", "&", "PRES", "N.M", "N.R."]

# 预处理函数:去除特定词
def preprocess_name(name):
    for word in words_to_remove:
        name = name.replace(word, "").strip()  # 去除词并去掉多余空格
    return name

# 读取Excel文件
df_all_parks = pd.read_excel("all.xlsx")  # 替换为你的文件名
df_some_parks = pd.read_excel("结果.xlsx")  # 替换为你的文件名

# 提取公园名称列表
all_park_names = df_all_parks["英文名称"].dropna().unique().tolist()  # 替换"公园名称"为实际列名
some_park_names = df_some_parks["Park Name"].dropna().unique().tolist()

# 模糊匹配并记录结果
results = []
i = 0
for name in some_park_names:
    # 预处理名称:去除特定词
    cleaned_name = preprocess_name(name)
    # 获取最佳匹配(阈值可调)
    match, score = process.extractOne(cleaned_name, all_park_names, scorer=process.fuzz.token_sort_ratio)
    if score >= 60:  # 仅当相似度≥60%时处理
        # 找到在df_all_parks中匹配的行
        matched_rows = df_all_parks[df_all_parks["英文名称"] == match]
        # 提取匹配行的distance值
        distances = matched_rows["distance"].tolist()  # 替换"distance"为实际列名
        # 记录结果
        for i, distance in enumerate(distances):
            results.append({
                '序号': '',
                "待匹配名称": name,  # 原始名称
                "预处理名称": cleaned_name,  # 预处理后的名称
                "匹配名称": match,
                "相似度": score,
                "行号": matched_rows.index[i],  # 记录行号
                "distance": distance  # 添加distance列的值
            })
    else:
        results.append({
            '序号': '',
            "待匹配名称": name,
            "预处理名称": cleaned_name,
            "匹配名称": "无匹配",
            "相似度": score,
            "行号": [],
            "distance": None  # 无匹配时distance为空
        })

# 转换为DataFrame并保存结果
result_df = pd.DataFrame(results)
result_df.to_excel("模糊匹配结果.xlsx", index=False)

print("匹配完成!结果已保存到 '模糊匹配结果.xlsx'")
### Python 字符串匹配方法及其示例 #### 常见的字符串匹配算法概述 在 Python 中,字符串匹配是一个重要的操作,广泛应用于文本处理、数据清洗等领域。以下是几种常用的方法和对应的实现方式。 --- #### 1. **朴素匹配算法** 这是一种最基础的字符串匹配算法,逐字符对比目标字符串中的每一个可能位置来查找子串是否存在。 ```python def naive_match(text, pattern): n = len(text) m = len(pattern) matches = [] for i in range(n - m + 1): # 遍历所有可能的位置 j = 0 while j < m and text[i + j] == pattern[j]: j += 1 if j == m: # 如果完全匹配,则记录起始索引 matches.append(i) return matches # 示例 text = "ababcabcacbab" pattern = "abc" print(naive_match(text, pattern)) # 输出: [2, 5] ``` 这种方法的时间复杂度为 O((n-m+1)m),其中 `n` 是主字符串长度,`m` 是模式串长度[^4]。 --- #### 2. **KMP (Knuth-Morris-Pratt) 算法** KMP 算法通过构建部分匹配表(Prefix Table),减少不必要的回溯,从而提高效率。 ```python def compute_prefix_table(pattern): prefix_table = [0] * len(pattern) j = 0 for i in range(1, len(pattern)): while j > 0 and pattern[i] != pattern[j]: j = prefix_table[j - 1] if pattern[i] == pattern[j]: j += 1 prefix_table[i] = j return prefix_table def kmp_search(text, pattern): prefix_table = compute_prefix_table(pattern) matches = [] j = 0 for i in range(len(text)): while j > 0 and text[i] != pattern[j]: j = prefix_table[j - 1] if text[i] == pattern[j]: j += 1 if j == len(pattern): matches.append(i - j + 1) j = prefix_table[j - 1] return matches # 示例 text = "ABABCABABDABABCABABA" pattern = "ABABCABABA" print(kmp_search(text, pattern)) # 输出: [8] ``` 该算法的时间复杂度为 O(n+m)。 --- #### 3. **Boyer-Moore 算法** Boyer-Moore 算法利用坏字符规则和好后缀规则跳过不可能匹配的部分,进一步优化了匹配速度。 ```python def bad_char_heuristic(pattern): heuristic = {} length = len(pattern) for i in range(length - 1): heuristic[pattern[i]] = length - i - 1 return heuristic def boyer_moore_search(text, pattern): bad_char_skip = bad_char_heuristic(pattern) s = 0 matches = [] while s <= len(text) - len(pattern): j = len(pattern) - 1 while j >= 0 and pattern[j] == text[s + j]: j -= 1 if j < 0: matches.append(s) s += max(1, len(pattern)) else: shift = bad_char_skip.get(text[s + j], len(pattern)) s += max(shift, j + 1) return matches # 示例 text = "AABAACAADAABAABA" pattern = "AABA" print(boyer_moore_search(text, pattern)) # 输出: [0, 9, 12] ``` 此算法通常具有优于线性的平均时间复杂度。 --- #### 4. **Rabin-Karp 算法** 基于哈希函数的思想,Rabin-Karp 算法可以快速判断两个字符串是否相等。 ```python def rabin_karp_search(text, pattern, prime=101): d = 256 # 字符集大小 q = prime # 取模数 h = pow(d, len(pattern)-1, q) t_hash = p_hash = 0 matches = [] # 计算初始哈希值 for i in range(len(pattern)): t_hash = (d * t_hash + ord(text[i])) % q p_hash = (d * p_hash + ord(pattern[i])) % q for s in range(len(text) - len(pattern) + 1): if t_hash == p_hash: match = True for i in range(len(pattern)): if text[s+i] != pattern[i]: match = False break if match: matches.append(s) if s < len(text) - len(pattern): t_hash = (t_hash - ord(text[s]) * h) % q t_hash = (t_hash * d + ord(text[s+len(pattern)])) % q t_hash = (t_hash + q) % q return matches # 示例 text = "GEEKS FOR GEEKS" pattern = "GEEK" print(rabin_karp_search(text, pattern)) # 输出: [0, 10] ``` 其时间复杂度取决于输入情况,在理想情况下接近于 O(n)。 --- #### 5. **内置方法与第三方库** 除了上述经典算法外,Python 提供了一些便捷的方式来进行字符串匹配: ##### (1)使用 `startswith()` 和 `endswith()` 这些方法分别用于检测字符串是否以特定前缀或后缀开头/结尾[^5]。 ```python filename = "example.txt" if filename.startswith("ex"): print("Filename starts with 'ex'") # 输出: Filename starts with 'ex' if filename.endswith(".txt"): print("File is a .txt file") # 输出: File is a .txt file ``` ##### (2)模糊匹配——`fuzzywuzzy` 库 对于不精确的字符串匹配需求,可借助外部工具如 `fuzzywuzzy` 实现[^3]。 ```python from fuzzywuzzy import fuzz from fuzzywuzzy import process string1 = "apple pie" string2 = "ApplePie" similarity_ratio = fuzz.ratio(string1.lower(), string2.lower()) print(similarity_ratio) # 输出相似度百分比 best_match = process.extractOne("banana", ["bananas", "orange", "grape"]) print(best_match) # 返回最佳匹配项及得分 ``` --- #### 性能比较 不同场景下应选择合适的算法: - 数据量较小时,朴素匹配即可满足需求; - 对大规模数据进行单次查询时推荐 KMP 或 BM; - 若需多次重复查询同一模式串,预计算开销较低的 RK 更加适用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

感谢地心引力

有用的话请我喝杯咖啡吧????

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值