在日常的数据处理、文本分析或自然语言处理任务中,字符串匹配是一个常见需求。然而,由于拼写错误、格式差异、缩写等原因,精确匹配(Exact Matching)往往无法满足实际需求。此时,模糊匹配(Fuzzy Matching)成为一种更灵活的选择。
如下图:2个excel中保存了一些公园的不同数据,且只有公园名称能唯一标记一个公园。由于数据来源不同,公园的名称是不完全相同的,且不规则,难以使用正则表达式等精确匹配,此时就可将进行模糊匹配。
一、FuzzyWuzzy 简介
FuzzyWuzzy 由 SeatGeek 公司开发并开源,其核心算法基于 Levenshtein 距离(编辑距离),通过计算两个字符串之间需要经过多少次单字符编辑(增、删、改)才能变得相同,来衡量它们的相似性。FuzzyWuzzy 进一步优化了这一过程,并提供了多种预定义的相似度计算方式,适用于不同场景。
主要特点:
- 灵活性强:支持部分匹配、忽略顺序匹配、模糊分词匹配等。
- 简单易用:通过封装好的函数即可快速实现复杂匹配逻辑。
- 高效性:结合
python-Levenshtein
库可大幅提升计算速度。
二、核心功能与 API
FuzzyWuzzy 提供了多个相似度计算函数,以下是常用的几种方法:
-
简单匹配(Ratio)
- 计算两个字符串的整体相似度,基于编辑距离。
from fuzzywuzzy import fuzz similarity = fuzz.ratio("apple", "appel") # 输出 86
-
部分匹配(Partial Ratio)
- 适合比较长字符串与短字符串的匹配程度。例如,在长文本中搜索子串。
fuzz.partial_ratio("apple pie", "apple") # 输出 100
- 词序无关匹配(Token Sort Ratio)
- 先对字符串分词并按字母排序,再计算相似度。适合忽略单词顺序的场景。
fuzz.token_sort_ratio("apple orange", "orange apple") # 输出 100
-
去重子集匹配(Token Set Ratio)
- 进一步忽略重复词,专注于共有词汇的匹配。
fuzz.token_set_ratio("apple apple", "apple") # 输出 100
-
加权匹配(WRatio)
- 综合多种策略,自动选择最佳匹配方式。
fuzz.WRatio("apple pie", "apple pi") # 输出 95
三、高级应用:从列表中提取最佳匹配
除了直接比较两个字符串,FuzzyWuzzy 的 process
模块支持从候选列表中快速找到与目标最接近的匹配项。
from fuzzywuzzy import process
choices = ["apple", "banana", "orange", "grape"]
result = process.extractOne("appel", choices, scorer=fuzz.WRatio)
print(result) # 输出 ('apple', 86)
参数说明:
extractOne
:返回列表中相似度最高的一个结果。scorer
:指定相似度计算函数(默认为WRatio
)。- 支持设置分数阈值(
score_cutoff
),过滤低质量匹配。
四、性能优化
FuzzyWuzzy 的默认实现可能较慢,尤其是在处理大规模数据时。通过以下方法可以提升性能:
-
安装
python-Levenshtein
库
该库用 C 语言实现了 Levenshtein 算法,能显著加速计算:pip install python-Levenshtein
-
预处理数据
- 去除字符串中的空格、标点符号。
- 统一转换为小写。
def preprocess(text): return text.lower().strip()
-
限制匹配范围
根据业务逻辑缩小候选列表的范围(如按首字母分组)。
五、应用场景
- 数据清洗
合并重复记录(如用户输入的不同地址变体)。 - 搜索引擎
提升查询纠错能力(如“New Yrok” → “New York”)。 - 自然语言处理
实体对齐、同义词扩展。 - 商业场景
商品名称匹配、发票信息核对。
六、优缺点分析
优点:
- 简单直观,适合快速实现模糊匹配需求。
- 支持多种匹配策略,灵活应对不同场景。
- 与 Python 生态集成良好(如 Pandas)。
缺点:
- 对长文本效果较差(计算复杂度高)。
- 默认依赖
python-Levenshtein
,可能需额外安装。 - 不直接支持非英文文本(需结合分词工具)。
替代方案
- difflib
Python 标准库中的文本对比工具,功能较基础。 - RapidFuzz
性能更优的 FuzzyWuzzy 替代品,API 兼容。 - Jellyfish
支持更多字符串距离算法(如 Jaro-Winkler)。
七、完整代码示例
import pandas as pd
from fuzzywuzzy import process
# 定义需要去除的词
words_to_remove = ["NP", "&", "PRES", "N.M", "N.R."]
# 预处理函数:去除特定词
def preprocess_name(name):
for word in words_to_remove:
name = name.replace(word, "").strip() # 去除词并去掉多余空格
return name
# 读取Excel文件
df_all_parks = pd.read_excel("all.xlsx") # 替换为你的文件名
df_some_parks = pd.read_excel("结果.xlsx") # 替换为你的文件名
# 提取公园名称列表
all_park_names = df_all_parks["英文名称"].dropna().unique().tolist() # 替换"公园名称"为实际列名
some_park_names = df_some_parks["Park Name"].dropna().unique().tolist()
# 模糊匹配并记录结果
results = []
i = 0
for name in some_park_names:
# 预处理名称:去除特定词
cleaned_name = preprocess_name(name)
# 获取最佳匹配(阈值可调)
match, score = process.extractOne(cleaned_name, all_park_names, scorer=process.fuzz.token_sort_ratio)
if score >= 60: # 仅当相似度≥60%时处理
# 找到在df_all_parks中匹配的行
matched_rows = df_all_parks[df_all_parks["英文名称"] == match]
# 提取匹配行的distance值
distances = matched_rows["distance"].tolist() # 替换"distance"为实际列名
# 记录结果
for i, distance in enumerate(distances):
results.append({
'序号': '',
"待匹配名称": name, # 原始名称
"预处理名称": cleaned_name, # 预处理后的名称
"匹配名称": match,
"相似度": score,
"行号": matched_rows.index[i], # 记录行号
"distance": distance # 添加distance列的值
})
else:
results.append({
'序号': '',
"待匹配名称": name,
"预处理名称": cleaned_name,
"匹配名称": "无匹配",
"相似度": score,
"行号": [],
"distance": None # 无匹配时distance为空
})
# 转换为DataFrame并保存结果
result_df = pd.DataFrame(results)
result_df.to_excel("模糊匹配结果.xlsx", index=False)
print("匹配完成!结果已保存到 '模糊匹配结果.xlsx'")