李航《统计学习方法》——聚类方法

  聚类方法有很多,下面叙述最常用的两种聚类方法:层次聚类和k均值聚类。层次聚类又有聚合和分裂两种方法。聚合法开始将每个样本各自分到一个类;之后将距离最近的两类合并,建立一个新的类;之后将已有类别中相聚最远的样本分到两个新的类,重复此操作直到满足停止条件,得到层次化的类别。

14.1 聚类的基本概念

14.1.1 相似度或距离

    聚类的对象是观测数据或样本集合。假设有 n n n个样本,每个样本有 m m m个属性的特征向量组成。样本集合表示为: X = [ x i j ] m × n = [ x 11 x 12 ⋯ x 1 n x 21 x 22 ⋯ x 2 n ⋮ ⋮ ⋱ ⋮ x m 1 x m 2 ⋯ x m n ] X=[x_{ij}]_{m\times n}=\left[ \begin{matrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{matrix} \right] X=[xij]m×n=x11x21xm1x12x22xm2x1nx2nxmn元素 x i j x_{ij} xij表示第 i i i个样本第 j j j个属性, i = 1 , 2 , ⋯   , n ,    j = 1 , 2 , ⋯   , m i=1,2,\cdots,n,\ \ j=1,2,\cdots,m i=1,2,,n,  j=1,2,,m.
    聚类的核心概念是相似度或距离,有多种相似度或距离的定义。因为相似度直接影响聚类的结果,所以其选择是聚类的根本问题。下面介绍几种常用的相似度定义:

  1. 闵可夫斯基距离
        在聚类中,可以将样本集合想象成向量空间中的点,可以以空间的距离表示样本之间的相似度。
    定义14.1 给定样本集合 X X X X X X m m m维实数向量空间 R m R^m Rm中点的集合,其中 x i , x j ∈ X x_i,x_j \in X xi,xjX x i = { x 1 i , x 2 i , ⋯   , x m i } T x_i=\lbrace x_{1i},x_{2i},\cdots,x_{mi} \rbrace^T xi={x1i,x2i,,xmi}T x j = { x 1 j , x 2 j , ⋯   , x m j } T x_j=\lbrace x_{1j},x_{2j},\cdots,x_{mj} \rbrace^T xj={x1j,x2j,,xmj}T,样本 x i x_i xi x j x_j xj之间的闵可夫斯基距离定义为: d i j = ( ∑ k = 1 m ∣ x k i − x k j ∣ p ) 1 p d_{ij}=(\sum_{k=1}^m|x_{ki}-x_{kj}|^p)^{\frac{1}{p}} dij=(k=1mxkixkjp)p1这里 p ≥ 1 p\geq1 p1。当 p = 2 p=2 p=2时称为欧式距离,即 d i j = ( ∑ k = 1 m ∣ x k i − x k j ∣ 2 ) 1 2 d_{ij}=(\sum_{k=1}^m|x_{ki}-x_{kj}|^2)^{\frac{1}{2}} dij=(k=1mxkixkj2)21 p = 1 p=1 p=1时称为曼哈顿距离,即 d i j = ∑ i = 1 m ∣ x k i − x k j ∣ d_{ij}=\sum_{i=1}^m|x_{ki}-x_{kj}| dij=i=1mxkixkj p = ∞ p=\infin p=时称为切比雪夫距离,取各个坐标差点最大值,即 d i j = m a x k ∣ x k i − x k j ∣ d_{ij}=max_k|x_{ki}-x_{kj}| dij=maxkxkixkj
  2. 马哈拉诺比斯距离
        马哈拉诺比斯距离,简称马氏距离,是另一种常用的相似度。考虑各个分量(特征)之间的相关性并与各个分量的尺度无关。马哈拉诺比斯距离越大相似度越小,距离越小相似度越大。
    定义14.2 给定一个样本集合 X X X X = ( x i j ) m × n X=(x_{ij}){m\times n} X=(xij)m×n,其协方差矩阵记作 S S S。样本 x i x_i xi与样本 x j x_j xj之间的马哈拉诺比斯距离 d i j d_{ij} dij定义为 d i j = [ ( x i − x j ) T S − 1 ( x i − x j ) ] 1 2 d_{ij}=[(x_i-x_j)^TS^{-1}(x_i-x_j)]^{\frac{1}{2}} dij=[(xixj)TS1(xixj)]21其中, x i = ( x 1 i , x 2 i , ⋯   , x m i ) T , x j = ( x 1 j , x 2 j , ⋯ , x m j ) T x_i=(x_{1i},x_{2i},\cdots,x_{mi})^T,x_j=(x_{1j},x_{2j},\cdots,x_{mj})^T xi=(x1i,x2i,,xmi)Txj=(x1j,x2j,xmj)T S S S为单位矩阵时,即样本数据的各个分量互相独立且各个分量的方差为1时,马氏距离就是欧氏距离,可以将马氏距离看作是欧氏距离的推广。
  3. 相关系数
        样本之间的相似度也可以用相关系数来表示。相关系数的绝对值越接近于1,表示样本越相似;越接近0,表示样本越不相似。
    定义14.3 样本 x i x_i xi与样本 x j x_j xj之间的相关系数定义为 r i j = ∑ k = 1 m ( x k i − x ‾ i ) ( x k j − x ‾ j ) [ ∑ k = 1 m ( x k i − x ‾ i ) 2 ∑ i = 1 m ( x k j − x ‾ j ) 2 ] 1 2 r_{ij}=\frac{\sum_{k=1}^m(x_{ki}-\overline x_i)(x_{kj}-\overline x_j)}{[\sum_{k=1}^m(x_{ki}-\overline x_i)^2\sum_{i=1}^m(x_{kj}-\overline x_j)^2]^\frac{1}{2}} rij=[k=1m(xkixi)2i=1m(xkjxj)2]21k=1m(xkixi)(xkjxj)其中, x ‾ i = 1 m ∑ k = 1 m x k i , x ‾ j = 1 m ∑ k = 1 m x k j \overline x_i=\frac{1}{m}\sum_{k=1}^mx_{ki},\overline x_j=\frac{1}{m}\sum_{k=1}^mx_{kj} xi=m1k=1mxkixj=m1k=1mxkj
  4. 夹角余弦
        样本之间的相似度也可以用夹角余弦来表示,夹角余弦越接近于1,表示样本越相似;越接近于0,表示样本越不相似。
    定义14.4 样本 x i x_i xi与样本 x j x_j xj 之间的余弦夹角定义为 s i j = ∑ k = 1 m x k i x k j [ ∑ k = 1 m x k i 2 ∑ k = 1 m x k j 2 ] 1 2 s_{ij}=\frac{\sum_{k=1}^mx_{ki}x_{kj}}{[\sum_{k=1}^mx_{ki}^2\sum_{k=1}^mx_{kj}^2]^{\frac{1}{2}}} sij=[k=1mxki2k=1mxkj2]21k=1mxkixkj

14.1.2 类或簇

    通过聚类得到的类或簇,本质是样本的子集。如果一个聚类方法假定一个样本只能属于一个类,或类的交集为空集,那么该方法称为硬聚类方法。否则,如果一个样本可以属于多个类,或类的交集不为空集,那么该方法称为软聚类方法。
    用 G G G表示类或簇,用 x i x_i xi, x j x_j xj表示类中的样本,用 n G n_G nG表示 G G G中样本的个数,用 d i j d_{ij} dij表示样本 x i x_i xi与样本 x j x_j xj之间的距离。
定义14.5 T T T 为给定的正数,若集合 G G G中任意两个样本 x i x_i xi x j x_j xj,有 d i j ≤ T d_{ij}\leq T dijT则称 G G G 为一个类或簇。
定义14.6 T T T 为给定的正数,若集合 G G G的任意样本 x i x_i xi,一定存在 G G G中的另一个样本 x j x_j xj,使得 d i j ≤ T d_{ij}\leq T dijT则称 G G G 为一个类或簇。
定义14.7 T T T 为给定的正数,若集合 G G G的任意样本 x i x_i xi G G G中的另一个样本 x j x_j xj满足 1 n G − 1 ∑ x j ∈ G d i j ≤ T \frac{1}{n_G-1}\sum_{x_j\in G}d_{ij}\leq T nG11xjGdijT其中 n G n_G nG G G G 样本的个数,则称 G G G 为一个类或簇。
定义14.8 T T T V V V 为给定的两个正数,如果集合 G G G 中的任意两个样本 x i x_i xi x j x_j xj的距离 d i j d_{ij} dij满足 1 n G ( n G − 1 ) ∑ x i ∈ G ∑ x j ∈ G d i j ≤ T \frac{1}{n_G(n_G-1)}\sum_{x_i\in G}\sum_{x_j\in G}d_{ij}\leq T nG(nG1)1xiGxjGdijT d i j ≤ T d_{ij}\leq T dijT则称 G G G 为一个类或簇。
    类的特征可以通过不同角度来刻画,常用的特征有下面三种:
(1)类的均值 x ‾ G \overline x_G xG,由称为类的中心 x ‾ G = 1 n G ∑ i = 1 n G x i \overline x_G=\frac{1}{n_G}\sum_{i=1}^{n_G}x_i xG=nG1i=1nGxi式中 n G n_G nG是类 G G G的样本个数。
(2)类的直径 D G D_G DG
    类的直径 D G D_G DG是类中任意两个样本之间的最大距离,即 D G = m a x x i , x j ∈ G d i j D_G=max_{x_i,x_j\in G}d_{ij} DG=maxxi,xjGdij
(3)类的样本散布矩阵 A G A_G AG与样本协方差矩阵 S G S_G SG
    类的散布矩阵 A G A_G AG
A G = ∑ i = 1 n G ( x i − x ‾ G ) ( x i − x ‾ G ) T A_G=\sum_{i=1}^{n_G}(x_i-\overline x_G)(x_i-\overline x_G)^T AG=i=1nG(xixG)(xixG)T
    样本协方差矩阵 S G S_G SG S G = 1 m − 1 A G = 1 m − 1 ∑ i = 1 n G ( x i − x ‾ G ) ( x i − x ‾ G ) T S_G=\frac{1}{m-1}A_G=\frac{1}{m-1}\sum_{i=1}^{n_G}(x_i-\overline x_G)(x_i-\overline x_G)^T SG=m11AG=m11i=1nG(xixG)(xixG)T其中 m m m为样本的维数(样本属性的个数)。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
李航的《统计学方法》是一本经典的统计学习教材,其中涵盖了统计学习的基本理论和方法。该书主要介绍了统计学习的三要素:模型、策略和算法。引用提到,训练集用来训练模型,验证集用来选择模型,测试集用于对学习方法的评估。这些三要素是统计学方法的基础。引用进一步解释了统计学习的目标,即通过构建概率统计模型对数据进行准确的预测与分析,并提高学习效率。引用提到了一种常用统计学方法,即提升(boosting),它通过改变训练样本的权重,学习多个弱分类器,并将它们线性组合成一个强分类器,以提高分类的性能。 总结起来,李航的《统计学方法》笔记主要围绕统计学习的基本理论和方法展开,介绍了统计学习的三要素、目标和提升等常用方法。这本书对于学习统计学习的人来说是一本非常有价值的参考资料。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [统计学方法——李航 笔记](https://blog.csdn.net/qq_45383347/article/details/110482540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [李航统计学方法学习笔记](https://blog.csdn.net/liuzuoping/article/details/98840923)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值