MINIST代码

该博客通过CNN网络实现MINIST数据集的手写数字识别,涉及GPU判断、数据预处理、网络构建、损失函数与优化器定义、网络训练及测试过程。
摘要由CSDN通过智能技术生成

GPU判断

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")*

os.path.join*

root = os.path.join('dataset') 

将输入层(图片等)转换为Tensor类型

transforms.ToTensor()

数据处理(以MINIST为例)

train_mnist_set = datasets.MNIST(root=root, train=True, transform=transform, download=True)
test_mnist_set = datasets.MNIST(root=root, train=False, transform=transform, download=False)
train_dataloader = DataLoader(train_mnist_set, batch_size=batch_size, shuffle=True)
test_dataloader = DataLoader(test_mnist_set, batch_size=batch_size, shuffle=False)

网络搭建

nn.Conv2d()
nn.BatchNorm2d()    #数据的归一化处理
nn.Relu(True)			#激活函数
nn.Conv2d()
nn.BatchNo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值