HDU 1525 Euclid's Game(Nim)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1525

解题思路:

一个大数A,一个小数B,A减去了n倍B,变成了比B小的数,此时两个数的地位发生了转变。

我们把每次到达地位改变的过程称为一个状态,这个过程最多可以操作的次数为A/B

我们记录这个这个最多可以操作的次数。

最终到了什么时候可以判断胜负了呢?就是a%b==0/b%a==0,那么下一次操作的人就会获胜。

所以整个过程其实就是求gcd的过程。

我们记录求出gcd过程中每个阶段可以操作的次数。

最终就转化为了n堆石子,按顺序取,每次可以取这堆任意个(至少一个),谁取完谁就赢的问题

如果每堆都是1那没什么好说的

如果有不是大于1的,那么谁拥有第一堆>1的首次操作权,他就可以根据之后的堆,来确定当前应该留下1个还是取完来使得他能够取到下一堆大于1的堆/获胜。

代码:

#include<cstdio>
#include<algorithm>
#include<cmath>

using namespace std;

#define ll long long
#define for0(i,a,b) for (int i=a;i<b;i++)
#define for1(i,a,b) for (int i=a;i<=b;i++)

const int N = 100;

ll tot,a[N];

ll gcd(ll aa,ll bb)
{
    if (aa<bb) swap(aa,bb);
    if (aa%bb==0) return bb;
    else {
        a[tot++] = aa/bb;
        return gcd(bb,aa%bb);
    }
}

int main()
{
    ll aa,bb;
    while (~scanf("%lld %lld",&aa,&bb)&& !(aa==0&&bb==0)){
        if (aa==0||bb==0) {puts("Ollie wins");continue;}

        tot = 0;
        gcd(aa,bb);
/*
        for0(i,0,tot){
            if (i!=0) printf(" ");
            printf("%lld",a[i]);
        }puts("");
*/
        a[tot] = 1;

        bool allone = true;
        int pos = -1;
        for1(i,0,tot){
            if (a[i]>1) {allone = false;if (pos==-1){pos = i+1;}}
        }

        if ( ((tot+1)%2==1 && allone)|| (!allone && pos%2==1) ) puts("Stan wins");
        else puts("Ollie wins");
    }
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值