CF1252/J Tiling Terrace神奇的动态规划思路

题目要求用三种特定方式覆盖一个包含#和.字符的字符串,每种方式有不同收益,且第一种有限制。通过转换问题,将三种方式简化为两种,利用动态规划求解最大收益。代码实现中需注意避免不可到达的状态转移,确保正确性。
摘要由CSDN通过智能技术生成

题目链接:
https://codeforces.com/problemset/problem/1252/J
题意:有一个长为n的串,每个字符是#或者.中的一个,#不超过50个
有3种覆盖串的方式:(.),(…),(.#.),分别能获得g1,g2,g3的收益,覆盖之间不能重叠
第一种方式不能使用超过K次,问能获得的最大总收益,可以不覆盖完所有n个字符
n<=1e5,0<=g1,g2,g3<=1e3

答案思路:
在这里插入图片描述
在这里插入图片描述
亮点:讲题目中的三种覆盖方式转换成两种覆盖方式,因为考虑到长度为2的板子可以被第一种type-1 tile替换,为什么这么做呢?因为题目加了个限制条件,type-1最多被铺k次,所以如果思考动态规划的转移时,能把他单独分开来,放到转移方程之外,那么问题会好解决很多。

代码实现上的收获,最好还是记录下某个状态可不可以到达,不要从不可到达的状态转移到不可到达的状态
,否者可能会考虑到这些不可到达的状态。代码中的解决是如此的
在这里插入图片描述
在这里插入图片描述
提前把数组初始化为-1,意味着状态都没达到,并且转移的时候还必须判断上一个状态是否已经到达。
注意!!

#include <bits/stdc++.h>
#define LL long long
const int maxn = 1e5 + 10;
LL n,k,G1,G2,G3;
char s[maxn];
LL dp[maxn][55]= {
   0};
using namespace std;
int main()
{
   
    cin>>n>>k>>G1>>G2>>G3;
    scanf("%s",s+1);
    memset(dp,-1,sizeof(dp));
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值