题目链接:
https://codeforces.com/problemset/problem/1252/J
题意:有一个长为n的串,每个字符是#或者.中的一个,#不超过50个
有3种覆盖串的方式:(.),(…),(.#.),分别能获得g1,g2,g3的收益,覆盖之间不能重叠
第一种方式不能使用超过K次,问能获得的最大总收益,可以不覆盖完所有n个字符
n<=1e5,0<=g1,g2,g3<=1e3
答案思路:
在这里插入图片描述
亮点:讲题目中的三种覆盖方式转换成两种覆盖方式,因为考虑到长度为2的板子可以被第一种type-1 tile替换,为什么这么做呢?因为题目加了个限制条件,type-1最多被铺k次,所以如果思考动态规划的转移时,能把他单独分开来,放到转移方程之外,那么问题会好解决很多。
代码实现上的收获,最好还是记录下某个状态可不可以到达,不要从不可到达的状态转移到不可到达的状态
,否者可能会考虑到这些不可到达的状态。代码中的解决是如此的
提前把数组初始化为-1,意味着状态都没达到,并且转移的时候还必须判断上一个状态是否已经到达。
注意!!
#include <bits/stdc++.h>
#define LL long long
const int maxn = 1e5 + 10;
LL n,k,G1,G2,G3;
char s[maxn];
LL dp[maxn][55]= {
0};
using namespace std;
int main()
{
cin>>n>>k>>G1>>G2>>G3;
scanf("%s",s+1);
memset(dp,-1,sizeof(dp));