逆元

逆元,又称数论倒数,是解决大数取模除法问题的关键。只有当gcd(a,p)=1时,a关于模数p存在逆元。本文介绍了三种求逆元的方法:1. 扩展欧几里得算法,适用于所有情况;2. 线性算法,适用于模数为质数的情况;3. 费马-欧拉+快速幂,常数较大但依然有效。此外,还提供了一种求因子之和的例题,涉及等比数列和的计算。" 16983313,819909,完善Python2.7从共享文件拷贝脚本,"['Python', '文件操作', '网络访问']
摘要由CSDN通过智能技术生成

简单得求余概念:

  • ( a + b ) % p = ( a % p + b % p ) % p (a+b)\%p=(a\%p+b\%p)\%p (a+b)%p=(a%p+b%p)%p
  • ( a − b ) % p = ( a % p − b % p + p ) % p > 0 (a-b)\%p=(a\%p-b\%p+p)\%p>0 (ab)%p=(a%pb%p+p)%p>0
  • ( a ∗ b ) % p = ( a % p ∗ b % p ) % p (a*b)\%p=(a\%p*b\%p)\%p (ab)%p=(a%pb%p)%p

但是除运算就不能这样分解了,对于一些非常大的数字取模,当出现除法时,该怎么办?
这时我们就需要逆元,又称数论倒数。除数 b b b关于模数 p p p的逆元用 i n v ( b ) inv(b) inv(b)表示,那么:
( a / b ) % p = ( a ∗ i n v ( b ) ) % p = ( a % p ∗ i n v ( b ) % p ) % p (a/b)\%p=(a*inv(b))\%p=(a\%p*inv(b)\%p)\%p (a/b)%p=(ainv(b))%p=(a%pinv(b)%p)%p
下面介绍两种常用的求逆元的方法:

求逆元前提:只有gcd(a,p)=1,才存在a关于p的逆元。

1.扩展欧几里得

时间复杂度:效率较高 常数较小 O ( l n ( p ) ) O(ln(p )) O(ln(p))不要求p为质数
定理:若 a ∗ x ≡ 1 ( m o d b ) a*x\equiv1 \pmod {b} ax1(modb) ,那么我们就能定义: x x x

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值