小朋友过桥问题:在一个夜黑风高的晚上,有n(n <= 50)个小朋友在桥的这边,现在他们需要过桥,但是由于桥很窄,每次只允许不大于两人通过,他们只有一个手电筒,所以每次过桥的两个人需要把手电筒带回来,i号小朋友过桥的时间为T[i],两个人过桥的总时间为二者中时间长者。问所有小朋友过桥的总时间最短是多少。
思路分析:假设过河有四个小朋友,其过河时间分别为1,2,3,4。我们先从小规模开始分析其最优的策略。
第一种,肯定是让1,2一起过去,然后1回来,把3接走,再让1回来,把4接走。
第二种情况,同样先是让1,2过去,然后1回来,但是接下来,可以让3,4一起走,然后2回来,把1接走。
这两种情况的区别就是,倒数的后两个人是一起走,还是其中一个先跟1走
所以,我们求出两种情况后,应该比较哪种是最小值,取最小。
ok,代码的基本思路现在已经理清了,那么具体又是如何实现的呢。很明显,这是一个典型的动态规划问题,即它有着典型的重复子问题,并且可以在最优化,我们可以尝试着,推导出它的递推公式:
首先我们可以轻易的求出它的基准情况,即当只有1、2、3个人时.
dp[1]=a[1]
dp[2]=a[2]
dp[3]=dp[1]+dp[2]+dp[3]
dp[4]=min(dp[4-2]+a[1]+a[4-1]+2*[2],dp[4-1]+a[1]+a[4])
依次类推。
动态规划类的问题重要的是找到递推公式,然后找到基准情况,也就是只考虑当前的情况,不考虑之前的,因为之前的情况经过递推已经是最优的了。
AC代码如下:
#include<iostream>
#include<algorithm>//以后的操作是要对数组进行排序,从小到大。因为肯定是要从小到大进行过河
,最大的要留在最后,
using namespace std;
int main(){
int n;
cin >> n;
int a[1009];
for(int i=1;i<=n;i++){
cin >> a[i];
}
int dp[1009];
sort(a+1,a+1+n);
dp[1]=a[1];
dp[2]=a[2];
dp[3]=a[2]+a[1]+a[3];
for(int i=4;i<=n;i++){
dp[i]=min(dp[i-2]+a[1]+a[i]+2*a[2],dp[i-1]+a[1]+a[i]);
}
cout << dp[n];
return 0;
}