动态规划之小朋友过河问题

小朋友过桥问题:在一个夜黑风高的晚上,有n(n <= 50)个小朋友在桥的这边,现在他们需要过桥,但是由于桥很窄,每次只允许不大于两人通过,他们只有一个手电筒,所以每次过桥的两个人需要把手电筒带回来,i号小朋友过桥的时间为T[i],两个人过桥的总时间为二者中时间长者。问所有小朋友过桥的总时间最短是多少。

 

 


思路分析:假设过河有四个小朋友,其过河时间分别为1,2,3,4。我们先从小规模开始分析其最优的策略。

第一种,肯定是让1,2一起过去,然后1回来,把3接走,再让1回来,把4接走。

第二种情况,同样先是让1,2过去,然后1回来,但是接下来,可以让3,4一起走,然后2回来,把1接走。

这两种情况的区别就是,倒数的后两个人是一起走,还是其中一个先跟1走

所以,我们求出两种情况后,应该比较哪种是最小值,取最小。

ok,代码的基本思路现在已经理清了,那么具体又是如何实现的呢。很明显,这是一个典型的动态规划问题,即它有着典型的重复子问题,并且可以在最优化,我们可以尝试着,推导出它的递推公式:

首先我们可以轻易的求出它的基准情况,即当只有1、2、3个人时.

dp[1]=a[1]

dp[2]=a[2]

dp[3]=dp[1]+dp[2]+dp[3]

dp[4]=min(dp[4-2]+a[1]+a[4-1]+2*[2],dp[4-1]+a[1]+a[4])

依次类推。

动态规划类的问题重要的是找到递推公式,然后找到基准情况,也就是只考虑当前的情况,不考虑之前的,因为之前的情况经过递推已经是最优的了。

 

 

AC代码如下:

#include<iostream>
#include<algorithm>//以后的操作是要对数组进行排序,从小到大。因为肯定是要从小到大进行过河
,最大的要留在最后,

using namespace std;
int main(){
	int n;
	cin >> n;
	int a[1009];
	for(int i=1;i<=n;i++){
		cin >> a[i];
	} 
	int dp[1009];
    sort(a+1,a+1+n);
    dp[1]=a[1];
    dp[2]=a[2];	
    dp[3]=a[2]+a[1]+a[3];
    for(int i=4;i<=n;i++){
    	dp[i]=min(dp[i-2]+a[1]+a[i]+2*a[2],dp[i-1]+a[1]+a[i]); 
	}

	cout << dp[n];
	return 0;
} 

 

 

 

 

 

袋鼠过河问题是一个经典的动态规划问题,可以使用C语言来求解。假设有n个石头,编号为1~n,袋鼠要从石头1跳到石头n,每个石头上都有一个数字表示跳到该石头需要的体力值,袋鼠的体力值为m,每次跳跃可以跳1~k个石头,求袋鼠能否跳到石头n。 以下是使用C语言实现袋鼠过河问题的代码: ```c #include <stdio.h> #include <stdbool.h> bool canCross(int stones[], int n, int m, int k) { // 初始化动态规划数组 bool dp[n][m+1]; for(int i = 0; i < n; i++) { for(int j = 0; j <= m; j++) { dp[i][j] = false; } } dp[0][0] = true; // 动态规划 for(int i = 1; i < n; i++) { for(int j = 1; j <= m; j++) { for(int l = 1; l <= k && l <= i; l++) { if(stones[i] - stones[i-l] <= j) { dp[i][j] = dp[i][j] || dp[i-l][j-(stones[i]-stones[i-l])]; } } } } // 返回结果 for(int i = 0; i <= m; i++) { if(dp[n-1][i]) { return true; } } return false; } int main() { int stones[] = {0, 1, 3, 5, 6, 8, 12, 17}; int n = sizeof(stones) / sizeof(stones[0]); int m = 4; int k = 3; bool result = canCross(stones, n, m, k); printf("%s\n", result ? "能够跳到石头n" : "无法跳到石头n"); return 0; } ``` 在这个例子中,我们使用一个二维数组`dp`来记录动态规划状态,其中`dp[i][j]`表示袋鼠在第i个石头上,体力值为j时是否能够到达石头n。我们先将`dp[0][0]`初始化为true,表示袋鼠在第1个石头上时,体力值为0,可以到达石头n。 接下来,我们利用三重循环遍历所有可能的情况。第一重循环枚举所有的石头,第二重循环枚举所有可能的体力值,第三重循环枚举可以跳跃的石头个数。如果从第i个石头跳到第i-l个石头需要的体力值不超过j,那么我们就可以通过状态转移方程`dp[i][j] = dp[i][j] || dp[i-l][j-(stones[i]-stones[i-l])]`来更新`dp[i][j]`的值。最后,如果`dp[n-1][i]`中有任何一个值为true,那么就表示袋鼠可以跳到石头n。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值