Python爬虫-爬取豆瓣高分电影封面

本文是本人最近学习Python爬虫所做的小练习。如有侵权,请联系删除

页面获取url

在这里插入图片描述

代码


import requests
import os
import re

# 创建文件夹
path = os.getcwd() + '/images'
if not os.path.exists(path):
    os.mkdir(path)

# 获取全部数据
def get_data():
    # 地址
    url = "https://movie.douban.com/j/search_subjects"
    # 传参
    params = {
   
        
当然,以下是Python爬虫爬取豆瓣Top250电影数据并进行可视化的代码: ``` import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np import matplotlib.pyplot as plt def get_html(url): try: user_agent = 'Mozilla/5.0' headers = {'User-Agent': user_agent} r = requests.get(url, headers=headers) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "" def get_movie_info(html): soup = BeautifulSoup(html, 'html.parser') movie_list = soup.find('ol', attrs={'class': 'grid_view'}) movie_names = [] movie_ratings = [] movie_votes = [] for movie_item in movie_list.find_all('li'): movie_name = movie_item.find('span', attrs={'class': 'title'}).get_text() movie_names.append(movie_name) movie_rating = float(movie_item.find('span', attrs={'class': 'rating_num'}).get_text()) movie_ratings.append(movie_rating) movie_vote = movie_item.find(text= '\n \n (人评价)\n ') movie_vote = int(movie_vote.split('\n')[0].strip()) movie_votes.append(movie_vote) return movie_names, movie_ratings, movie_votes def draw_top_250_chart(movie_names, movie_ratings, movie_votes): # create dataframe df_movies = pd.DataFrame({'电影名称': movie_names, '电影评分': movie_ratings, '观众人数': movie_votes}) # sort by rating df_movies = df_movies.sort_values(by=['电影评分'], ascending=False) # top 30 rating movies top30 = df_movies.head(30) top30 = top30.iloc[::-1] # reverse sort order y_pos = np.arange(len(top30['电影名称'])) # draw chart fig, ax = plt.subplots(figsize=(10, 10)) ax.barh(y_pos, top30['电影评分'], xerr=0.2, align='center', color='blue', ecolor='black') ax.set_yticks(y_pos) ax.set_yticklabels(top30['电影名称']) ax.invert_yaxis() # labels read top-to-bottom ax.set_xlabel('电影评分') ax.set_title('豆瓣Top250高分电影评分排名') # top 30 voted movies top30 = df_movies.sort_values(by=['观众人数'], ascending=False).head(30) top30 = top30.iloc[::-1] # reverse sort order y_pos = np.arange(len(top30['电影名称'])) # draw chart fig, ax = plt.subplots(figsize=(10, 10)) ax.barh(y_pos, top30['观众人数'], xerr=0.2, align='center', color='blue', ecolor='black') ax.set_yticks(y_pos) ax.set_yticklabels(top30['电影名称']) ax.invert_yaxis() # labels read top-to-bottom ax.set_xlabel('观众人数') ax.set_title('豆瓣Top250高分电影观众人数排名') plt.show() if __name__ == "__main__": top250_url = 'https://movie.douban.com/top250' top250_html = get_html(top250_url) movie_names, movie_ratings, movie_votes = get_movie_info(top250_html) draw_top_250_chart(movie_names, movie_ratings, movie_votes) ``` 这段代码将会从豆瓣网站爬取Top250电影数据,并利用matplotlib进行可视化。希望这可以帮助您!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值