数列极限的定义
极限概念是在某些实际问题的精确解答过程中产生的.
利用圆内接正多边形来推算圆面积的方法.
设有一圆,首先内接正六边形,把它的面积记为A1,再做内接正十二边形,面积记为A2,再做内接正二十四边形,面积记为A3,如此下去,每次边数加倍.
得到一系列内接正多边形的面积
A1,A2,A3···An···,
它们构成一列有次序的数.当n越大,内接正多边形与圆的差别就越小,从而以An作为圆面积的近似值也越精确,但是不论n多大,只要n取定了,终究只是多边形的面积,而不是圆的面积.因此,设想n无限增大,在这个过程中,内接多边形无限接近于圆,同时An也无限接近于某一确定的数值,这个确定的数值就理解为圆的面积.
这个确定的数值在数学上面称为上面这列有次序的数(即数列)当n趋近于无穷时的极限.
在圆面积为题里面我们看到,正是这个数列的极限才精确表达了圆的面积.
在解决实际问题中逐渐形成的这种极限的方法,成为高等数学中的一种基本方法,因此做进一步阐述.