#论文阅读#Blockwise Human Brain Network Visual Comparison Using NodeTrix Representation

1、研究背景在这里插入图片描述

从视觉上比较不同人群的脑网络结构是脑连接组织学的一个重要课题,在重构的网络密集且同质的情况下,常用的节点链接(Node-link)表达法可能无法揭示最重要的部分,邻接矩阵(Matrix)表达法在低层次的大脑网络比较中表现较好,但这两种方式都是**非常低的任务准确率与高的完成时间,需要更优越的表示法呈现密集且同质的人脑网络及其加权连接模式。
由于1、需要大规模和高质量的脑网络测量。2、脑网络研究中的许多计算模型需要投入大量人力物力,所以辨别性脑连接特征的检测和鉴别依然令人畏惧,而可视化工具对解决这些难题,以比较大脑的高维连接模式有非常重要的作用。

2、研究内容

运用 阿尔兹海默症组vs正常组,高综合创造力指数组vs低综合创造力指数组 数据比较。

1、集成的视觉分析框架
在这里插入图片描述
本文提出一个视觉分析框架,将ROI块生成聚类与交互式可视化相结合,以帮助识别和分析块状大脑网络连通性差异。
第一阶段:应用聚类算法检测两层ROI块层次结构。在顶层,大脑被划分成所有ROI功能块,在底层每个,每个功能块被划分为若干比较块,以最大化网络比较中的群级差异。
第二阶段:集成混合的NodeTrix可视化表现,功能块显示矩阵,比较块显示为矩阵内合并的行/列,每个ROI由单独的行/列表示。为了优化块间连通性比较,引入力导向边捆绑算法可视化聚合同一对ROI块的连接。

2、自适应的ROI聚类方式
顶层的ROI层次结构由ROI功能块组成,采用大脑叶分类法。在二级ROI层次结构,用聚类算法来检测最能揭示连通性差异的比较块。主要思想是将预测分析与大脑网络间的视觉比较联系起来。优化分块脑网络视觉比较的问题转化为寻找最佳ROI聚类,最大限度提高脑网络分类的准确性。

3、力导向边捆绑算法
体现ROI块之间的连接性,进一步提高NodeTrix表达法在现实比较任务中的性能。

3、算法实现

1、ROI聚类算法

a. A basic logistic regression model and Negative Log Likelihood(NLL)
N个样本,每个由n个节点与p条边,每一个的边缘权值以Xi表示,每个主题有一个二进制的输出变量Y(主题标签)。
在这里插入图片描述
b. Lasso Model
选择信息最丰富的特性作为特性选择预测的标签(防止严重的过度拟合)。
在这里插入图片描述
c. Sparse Group Lasso(SGL)
直接链接到ROI聚类时的网络节点分组,使它们的边缘相应地聚合。(原始lasso模型没有这个功能)。
在这里插入图片描述
2、最优的ROI聚类(优化过程)

a. 暴力搜索
直接对内容进行搜索。
时间复杂度O(n ^ n),效率极低。

b. 搜索树
运用贪婪搜索,即建立搜索树,选择聚类设置,在每一步获得最高准确率。
时间复杂度O(n ^ 3),由于数据量不算特别大,可以接受。
在这里插入图片描述
c. 斜率优化(Roll-Back)
由于搜索空间的非凹性与组合性,贪婪搜索极有可能陷入局部最大值,为了防止这个问题,引入Roll-Back操作,即引入一个斜率约束S,若某点的最佳准确性低于S,则用S覆盖,同时控制另两个参数Dmax(最大回转深度)与斜率约束步长∆S,当回滚超过Dmax时,S减去一个∆S以放松斜率约束。
在这里插入图片描述
d. 记忆化搜索
缓存策略,建立在相同的组合准确性变化不大之上,在后一次搜索中直接运用之前出现并记录的值,这大大降低了为每个新集群重复SGL建模的成本。

4、可视设计

1、NodeTrix表示
对于每个大脑网络,高层次的视觉表征是由几个矩阵组成的,每个矩阵对应于大脑中的一个功能块,也就是我们设置的解剖叶之一。
在每个视图的布局,我们考虑优化地形接近和性能的视觉比较。 代表功能块的基质被置于解剖叶的中心。 每个功能块 / 比较块中的 ROI 最初是按其 ROI 指数排序的。

a. Sagittal View
在这里插入图片描述
b. Axial View
在这里插入图片描述
c. Coronal View
Supplemental Video(没找到……)

2、力导向边捆绑算法
将感兴趣区块之间的脑连通性描述为矩阵之间的B-spline curves通过为每条曲线选择合适的控制点,这些边被捆绑在一起。
提出语义捆绑优化视觉比较和几何捆绑显示底层纤维路径的物理路由路径.

a. Semantic edge bundling
该方法的目标是在保持分块连接模式的同时,减少由于密集的 ROI-level 连接带来的视觉杂波。 我们通过一个三步力导向边捆绑算法来实现这一点。
在这里插入图片描述
b. Geometric edge bundling
首先将大脑网络连接与通过跟踪记录重建的纤维束连接起来。 这些纤维束可以几何聚集成束[26] ,其中每个束表示几个 ROI 块之间的连通性。 每个分区连接的控制点可以从这些束中选择,以显示人脑中纤维的几何路径。
在这里插入图片描述
3、可视系统界面
左侧是对照组50个样本(Control Group(50)),右侧是阿尔兹海默症患者42个样本(AD Patients(42))。
中间部分为交互控制界面:
View Projection: 选择NodeTrix表示的显示形态(Sagittal View - 矢状位, Axial View - 横切面, Coronal View - 冠状面)。
Classification Accuracy: 选择精度。
Color Map: 颜色控制。
Binary Selector: 二进制选择器
Matrix Ops: 矩阵操作(Contrast - 对比, Reorder - 重置)
Edge Bundling: 选择边绑定(None - 无捆绑, Semantic - 语义捆绑, Geometric - 几何捆绑)
Focused Block - 关注块
在这里插入图片描述

5、总结

本文提出了一个综合的视觉分析方法来比较人群之间的区块式脑网络的差异,一个高度相关的任务,旨在可视化的人脑网络的临床研究。现有的视觉表达方式,比如节点链接图和邻接矩阵图, 与现实生活中同质且密集连接的大脑网络相比,其准确性很低。
针对这一问题,本文提出了:
1)基于预测性能驱动的贪婪ROI聚类算法;
2)改进的NodeTrix设计,用于显示分块式大脑网络连接模式;
3)一系列定制的交互,以加速最近组之间的视觉比较。采用两种分离语义信息和几何信息的边缘捆绑算法,实现了杂波的可视化减少和与下层光纤通道数据的连接。
本文通过控制用户实验和最先进的可视化方法相比较,以及对真实世界的大脑网络的个案研究,证明了我们的方法在块状大脑网络视觉比较中的有效性。
最后,本文的方法可以扩展到支持许多其他地理空间网络(如动态流量和迁移网络)的 可视化比较,在这些地理空间网络上存在固有的分块连接模式和网络节点位置是地理空间固定的。

6、结论

这篇论文充满创新思维,多个算法模型互相组合、完善,有效的优化了解决脑科学任务的方式,提高了准确率,使研究能够极大进步。

7、引用

Xinsong Yang, Lei Shi, Madelaine Daianu, Hanghang Tong, Qingsong Liu and Paul Thompson. Blockwise Human Brain Network Visual Comparison Using NodeTrix Representation

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值