射频电路设计(RF Circuit Design)——传输线理论(Transmission Line Analysis) 【上】
文章目录
前言
最近刚好在搞射频这一块,传输线理论的话属于是基础中的基础,很多概念还是会有所模糊,就自己写了一份笔记,里面加入了不少自己的理解和思考,发出来大家也可以互相探讨探讨。
因为本来是自己的笔记,所以就比较随意,如果有人看到的话,希望不会介意。
笔记比较长,先放一部分
下篇:传输线理论(Transmission Line Analysis) 【下】
正文
啥是传输线?
传输线是电子工程中的专用电缆或者其他结构,用于传输无线电频率的交变电流 ( 就电线么 )
给几个例子:
- 双线传输线 Two-Wire Lines(就两根线):

- 同轴传输线 Coaxial Line:

- 微带传输线 Microstrip Lines(PCB板上的导带可以看作是微带线,也有专门做出来当作元件的):

三明治结构 Sandwich structure:

平行板结构 Geometric representation:

0️⃣ 传输线理论的实质 (这玩意干嘛的?)
传输线理论的目的:针对于高频电路,当电路特征尺寸可用于电磁波波长相比拟时(1/10),电压和电流将随空间位置不同而变化,传统的电路理论不适用,需要有一个全新的理论来辅助电路设计。
特征尺寸:通常指集成电路中半导体器件的最小尺寸( Eg. MOS的沟道长度 )
- 由于电压和电流在电路中不同空间位置的大小不同,针对于正弦波,考虑以一个函数来衡量其在电路中的大小,该函数应当将空间和时间结合在一起。因此,针对于电压波(电压波沿着z轴正方向传播):
V ( z , t ) = V 0 s i n ( ω t − β z ) V(z,t)=V_0sin(\omega t-\beta z) V(z,t)=V0sin(ωt−βz)
- 针对于该式,沿z轴的波长 λ \lambda λ描述其空间特征,用沿着时间轴的周期 $T=1/f 描 述 = = 时 间 特 性 = = , 即 相 对 于 时 间 的 空 间 变 化 − − − > 运 动 速 度 , 射 频 电 路 中 用 = = 相 速 度 描述==时间特性==,即相对于时间的空间变化 ---> 运动速度,射频电路中用==相速度 描述==时间特性==,即相对于时间的空间变化−−−>运动速度,射频电路中用==相速度v_p$==来描述:
v p = ω / β = λ f = 1 ϵ μ = c ϵ r μ r v_p=\omega/\beta=\lambda f=\frac{1}{\sqrt{\epsilon \mu}}= \frac{c}{\sqrt{\epsilon_r \mu_r}} vp=ω/β=λf=ϵμ1=ϵrμrc
相速度,是指波的相速度或相位速度,或简称相速,相速度的定义是电磁波的恒定相位点的推进速度。
理论上用示波器测出来应该这种样子(两个波形有相位差,所以上面那个叫相速度,帮助理解下)
1️⃣ 等效电路模型 (使定量分析传输线成为可能)
电压电流随空间位置变化的特性使得基尔霍夫电压电流定律
对于较长导线不再适用,这对于电路设计时计算的精确度来说是一场灾难。
幸运的是,将较长的导线分割为微小线段,并引入分布参数(the distributed parameter)的可以在一定程度上能有效应对这一挑战(类似于微分),因为在被分割后的单一线段上,基尔霍夫老爷子的定律仍然行得通。
而对于微小线段的分析,利用分布参数可以建立数学模型(以双线传输线为例,其他同理):

R、L:寄生的电阻、电感
C:导线间电荷分离导致的电容效应
G:介质损耗(非理想绝缘体)R L C G 均表示的是单位长度的值
等效电路的一般形式(为了方便分析):

事实上,等效电路中的参数是可以通过麦克斯韦定律计算而出的,针对不同的传输线,其对应参数的表达式不同,且可以通过查表得到,例如下表:

表达式中 δ \delta δ为趋肤深度
2️⃣ 传输线方程 (理论分析的基础)
传输线方程是什么? 是一个微分方程组[用来描述电路中的电路电压关系],解出来以后可以得到传输线中某一点的具体电流电压值(事实上并不完全精确)
怎么来的? (两条路线:1. 利用等效电路模型以及基尔霍夫电流电压定律,推导而出;2. 麦克斯韦方程组)
具体推导不再赘述,通过等效电路模型推导的方式似乎更加容易理解;
大概思路就是,因为等效电路模型已经是将传输线进行分割后得到的模型( 因为长度非常短,就可以利用基尔霍夫电流电压定律得到这一微小单元里面的电流电压关系 ),很容易联想到这其实和微分殊途同归;
因此将这一微小单元的电流电压关系利用微分进行替代,就能得到该种传输线的传输线方程,对其进行求解就能得到传输线上具体节点的电路电压,下面列出双线传输线的传输线方程,以作参考比较:
针对等效电路模型,利用基尔霍夫电压定律得到:
(
R
+
j
ω
L
)
I
(
z
)
Δ
z
+
V
(
z
+
Δ
z
)
=
V
(
z
)
⇒
l
i
m
Δ
z
→
0
(
−
V
(
z
+
Δ
z
)
−
V
(
z
)
Δ
z
)
=
−
d
V
(
z
)
d
z
=
(
R
+
j
ω
L
)
I
(
z
)
(R+j\omega L)I(z)\Delta z+V(z+\Delta z)=V(z) \\ \Rightarrow lim_{{\Delta z}\to0}\bigg(-\frac{V(z+\Delta z)-V(z)}{\Delta z}\bigg)=-\frac{dV(z)}{dz}=(R+j\omega L)I(z)
(R+jωL)I(z)Δz+V(z+Δz)=V(z)⇒limΔz→0(−ΔzV(z+Δz)−V(z))=−dzdV(z)=(R+jωL)I(z)
电流同理,因此得到双线传输线的传输线方程为:
−
d
V
(
z
)
d
z
=
(
R
+
j
ω
L
)
I
(
z
)
,
d
I
(
z
)
d
z
=
−
(
G
+
j
ω
C
)
V
(
z
)
-\frac{dV(z)}{dz}=(R+j\omega L)I(z)\ ,\\ \frac{dI(z)}{dz}=-(G+j\omega C)V(z)
−dzdV(z)=(R+jωL)I(z) ,dzdI(z)=−(G+jωC)V(z)
求解过程(简单几句提一下):
**将传输线方程简单处理(**求导)并互相带入:
d
2
V
(
z
)
d
z
2
−
γ
2
V
(
z
)
=
0
,
d
2
I
(
z
)
d
z
2
−
γ
2
I
(
z
)
=
0
,
γ
=
α
+
j
β
=
(
R
+
j
ω
L
)
(
G
+
j
ω
C
)
\frac{d^2V(z)}{dz^2}-\gamma ^2V(z)=0\ ,\\ \frac{d^2I(z)}{dz^2}-\gamma ^2I(z)=0\ ,\\ \gamma = \alpha+j\beta=\sqrt{(R+j\omega L)(G+j\omega C)}
dz2d2V(z)−γ2V(z)=0 ,dz2d2I(z)−γ2I(z)=0 ,γ=α+jβ=(R+jωL)(G+jωC)
式中, γ \gamma γ为复传播常数, α \alpha α代表衰减系数, β \beta β代表相位常数
通解为(第一项均代表向+z方向传播的波,第二项为-z方向):
V
(
z
)
=
V
+
e
−
γ
z
+
V
−
e
+
γ
z
,
I
(
z
)
=
I
+
e
−
γ
z
+
I
−
e
+
γ
z
V(z)=V^+ e^{-\gamma z}+V^- e^{+\gamma z}\ , \\ I(z)=I^+ e^{-\gamma z}+I^- e^{+\gamma z}
V(z)=V+e−γz+V−e+γz ,I(z)=I+e−γz+I−e+γz
由上式及复传播系数可以得到,波沿着==+z==方向传播的波的幅度将逐渐减小,vice versa.
将(6)式回代入(4)式中得到:(反正就是疯狂回代)
I
(
z
)
=
γ
R
+
j
ω
L
(
V
+
e
−
γ
z
−
V
−
e
+
γ
z
)
I(z)=\frac{\gamma}{R+j\omega L}(V^+ e^{-\gamma z} - V^- e^{+\gamma z})
I(z)=R+jωLγ(V+e−γz−V−e+γz)
看到这个式子似乎豁然开朗了,电流和电压通过一个万一联系起来了,电压?电导?
至此,引入一个非常重要的概念:特性阻抗 (Characteristic Impedance)
特性阻抗并非常规电路意义上的阻抗,它的定义基于正向和反向行进的电压波和电流波
Z 0 = R + j ω L γ = R + j ω L G + j ω C = V + I + = − V − I − Z_0= \frac{R+j\omega L}{\gamma}=\sqrt{\frac{R+j\omega L}{G+j\omega C}}=\frac{V^+}{I^+}=-\frac{V^-}{I^-} Z0=γR+jωL=G+jωCR+jωL=I+V+=−I−V−
进一步,电流波和电压波可以表示为:
V
(
z
)
=
V
+
e
−
γ
z
+
V
−
e
+
γ
z
,
I
(
z
)
=
1
Z
0
(
V
+
e
−
γ
z
−
V
−
e
+
γ
z
)
V(z)=V^+ e^{-\gamma z}+V^- e^{+\gamma z}\ , \\ I(z)=\frac{1}{Z_0}(V^+ e^{-\gamma z} - V^- e^{+\gamma z})
V(z)=V+e−γz+V−e+γz ,I(z)=Z01(V+e−γz−V−e+γz)
通过上面的推导,我们除了解出电压波和电流波的表达式外,还得到了一个非常重要的物理量——特征阻抗 ,这几个东西几乎会出现在以后所有的射频电路分析中,望谨记。