cento7 spark3 安装 anaconda安装

一、Spark部署安装

1. Spark Local 模式搭建文档

在本地使用单机多线程模拟Spark集群中的各个角色

1.1 安装包下载

目前Spark最新稳定版本:课程中使用目前Spark最新稳定版本:3.1.x系列
https://spark.apache.org/docs/3.1.2/index.html
注意1:
Spark3.0+基于Scala2.12
http://spark.apache.org/downloads.html
在这里插入图片描述
注意2:
目前企业中使用较多的Spark版本还是Spark2.x,如Spark2.2.0、Spark2.4.5都使用较多,但未来Spark3.X肯定是主流,毕竟官方高版本是对低版本的兼容以及提升
http://spark.apache.org/releases/spark-release-3-0-0.html
在这里插入图片描述

1.2 将安装包上传并解压

说明: 只需要上传至node1即可, 以下操作都是在node1执行的

cd /export/software

上传
在这里插入图片描述
解压:

tar -zxf spark-3.1.2-bin-hadoop3.2.tgz  -C /export/server/

在这里插入图片描述
更名: (两种方式二选一即可, 推荐软连接方案)
直接重命名:

mv spark-3.1.2-bin-hadoop3.2 spark

软连接方案:

 ln -s spark-3.1.2-bin-hadoop3.2 spark

目录结构说明:
在这里插入图片描述

1.3 测试

Spark的local模式, 开箱即用, 直接启动bin目录下的spark-shell脚本

cd /export/server/spark/bin
./spark-shell

在这里插入图片描述
说明:
sc:SparkContext实例对象:
spark:SparkSession实例对象
4040:Web监控页面端口号
在这里插入图片描述

  • Spark-shell说明:
    1.直接使用./spark-shell
    表示使用local 模式启动,在本机启动一个SparkSubmit进程
    2.还可指定参数 --master,如:
    spark-shell --master local[N] 表示在本地模拟N个线程来运行当前任务
    spark-shell --master local[] 表示使用当前机器上所有可用的资源
    3.不携带参数默认就是
    spark-shell --master local[
    ]
    4.后续还可以使用–master指定集群地址,表示把任务提交到集群上运行,如
    ./spark-shell --master spark://node01:7077,node02:7077
    5.退出spark-shell
    使用 :quit

2. PySpark环境安装

这里简单说明一下:
PySpark: 是Python的库, 由Spark官方提供. 专供Python语言使用. 类似Pandas一样,是一个库
Spark: 是一个独立的框架, 包含PySpark的全部功能, 除此之外, Spark框架还包含了对R语言\ Java语言\ Scala语言的支持. 功能更全. 可以认为是通用Spark。

2.1 下载Anaconda环境包

安装版本:https://www.anaconda.com/distribution/#download-section
Python3.8.8版本:Anaconda3-2021.05-Linux-x86_64.sh
在这里插入图片描述

2.2 安装Anaconda环境

此环境三台节点都是需要安装的, 以下演示在node1安装, 其余两台也是需要安装的

cd /export/software

上传Anaconda脚本环境

在这里插入图片描述
执行脚本:

bash Anaconda3-2021.05-Linux-x86_64.sh

在这里插入图片描述
不断输入空格, 直至出现以下解压, 然后输入yes
在这里插入图片描述
此时, anaconda需要下载相关的依赖包, 时间比较长, 耐心等待即可…
在这里插入图片描述
配置anaconda的环境变量:

vim /etc/profile

增加如下配置

export ANACONDA_HOME=/root/anaconda3/bin
export PATH=$PATH:$ANACONDA_HOME/bin

重新加载环境变量:

source /etc/profile

修改bashrc文件

sudo vim ~/.bashrc

添加如下内容: 直接在第二行空行添加即可

export PATH=~/anaconda3/bin:$PATH

2.3 启动anaconda并测试

注意: 请将当前连接node1的节点窗口关闭,然后重新打开,否则无法识别
输入 python -V启动:
在这里插入图片描述
base: 是anaconda的默认的初始环境, 后续我们还可以构建更多的虚拟环境, 用于隔离各个Python环境操作, 如果不想看到base的字样, 也可以选择直接退出即可
执行:
conda deactivate
在这里插入图片描述
但是当大家重新访问的时候, 会发现又重新进入了base,如何让其默认不进去呢, 可以选择修改.bashrc这个文件

vim ~/.bashrc

在文件的末尾添加:
conda deactivate

保存退出后, 重新打开会话窗口, 发现就不会在直接进入base了

2.4 Anaconda相关组件介绍[了解]

Anaconda(水蟒):是一个科学计算软件发行版,集成了大量常用扩展包的环境,包含了 conda、Python 等 180 多个科学计算包及其依赖项,并且支持所有操作系统平台。下载地址:https://www.continuum.io/downloads

  • 安装包:pip install xxx,conda install xxx
  • 卸载包:pip uninstall xxx,conda uninstall xxx
  • 升级包:pip install upgrade xxx,conda update xxx
    Jupyter Notebook:启动命令
### 如何在 CentOS 7安装 GCC 编译器 #### 使用 Yum 安装 GCC 编译器 对于拥有互联网连接的环境,在线安装是最简便的方法。通过 `yum` 命令可以快速完成 GCC 及其 C++ 支持工具链的部署。 ```bash sudo yum -y install gcc gcc-c++ ``` 这条命令会自动处理依赖关系并安装必要的组件[^1]。 #### 验证安装成功与否 为了确认 GCC 已经被正确安装,可以通过下面的命令来查看当前系统的 GCC 版本: ```bash gcc --version ``` 如果显示出了具体的版本号,则表示安装过程顺利完成[^2]。 #### 处理内核头文件缺失的情况 有时编译某些程序可能还需要额外的 Linux 内核开发包 (`kernel-devel`) 来提供所需的头文件支持。同样地,这也可以借助于 `yum` 轻松解决: ```bash sudo yum -y install kernel-devel ``` 此操作有助于确保后续项目构建过程中不会遇到因缺少必要头文件而导致的问题[^3]。 #### 对于无外网访问权的企业内部网络而言 当处于受限环境中时,离线安装成为唯一的选择。此时需提前准备好 RPM 文件或源码压缩包,并将其传输到目标机器上。具体步骤如下所示: - **准备阶段**:收集所需的所有二进制包及其依赖项; - **实际安装**:利用本地资源管理器或其他方式导入这些预先下载好的软件包至服务器中; - **配置环境变量**(可选):根据实际情况调整 PATH 或其他相关设置以便顺利调用新安装的编译器版本; 值得注意的是,在执行上述任何一项任务之前,请务必先做好现有数据备份工作以防万一发生意外情况造成不可逆损害[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值