迷宫城堡HDU1269 (强连通专题)

原题目:

为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。

Input

输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。

Output

对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。

Sample Input

3 3
1 2
2 3
3 1
3 3
1 2
2 3
3 2
0 0

Sample Output

Yes
No
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
vector<int> uv[10005];
vector<int> vu[10005];
int vis[10005];
int n,m,cnt; 
int u,v;
void dfs(int u)
{
	vis[u]=1;
	cnt++;
	int len1=uv[u].size();
	for(int i=0;i<len1;i++)
	{
		int v=uv[u][i];
		if(!vis[v])
		{
			dfs(v);
		}
	}
}
void dfs2(int v)
{
	vis[v]=1;
	cnt++;
	int len2=vu[v].size();
	for(int i=0;i<len2;i++)
	{
		int u=vu[v][i];
		if(!vis[u])
		{
			dfs2(u);
		}
	}
}
int main()
{
	while(scanf("%d%d",&n,&m)&&(n||m))
	{
		memset(vis,0,sizeof(vis));
		for(int i=1;i<=n;i++)
		{
			uv[i].clear();
			vu[i].clear();
		}
		while(m--)
		{
			scanf("%d%d",&u,&v);
			uv[u].push_back(v);
			vu[v].push_back(u);
		}
		cnt=0;
		dfs(1);
		if(cnt==n)
		{
			memset(vis,0,sizeof(vis));
			cnt=0;
			dfs2(1);
			if(cnt!=n)
			{
				printf("No\n");
			}
			else
			{
				printf("Yes\n");
			}
		}
		else
		{
			printf("No\n");
		}
	}
	return 0;
 } 

思路:

思路1:按正向边dfs一遍,将经过的节点计数,如果记录的节点的个数小于n,那么就说明图按照正向边就不是连同的,所以就不是强连通图!
然后按照反向边再进行另一个dfs,同样对经过的节点的个数进行计数,如果个数==n则说明正向遍历和反响遍历都是连通的!那么整个图就是强连通的图!

强连通图(Strongly Connected Graph)定义:是指在有向图G中,如果对于每一对vi、vj,vi≠vj,从vi到vj和从vj到vi都存在路径,则称G是强连通图。有向图中的极大强连通子图称做有向图的强连通分量

其实这个思路并没有用到强连通的算法,只是用dfs利用了强连通的特性来解决的。

思路2:直接套用tarjan算法,求出每一个节点所对应的缩点的值, 如果缩点的个数==1,那么证明就会只有一个强连通分量!也就是强连通图
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

deebcjrb

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值