原题目:
为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间。Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i。
Input
输入包含多组数据,输入的第一行有两个数:N和M,接下来的M行每行有两个数a和b,表示了一条通道可以从A房间来到B房间。文件最后以两个0结束。
Output
对于输入的每组数据,如果任意两个房间都是相互连接的,输出"Yes",否则输出"No"。
Sample Input
3 3 1 2 2 3 3 1 3 3 1 2 2 3 3 2 0 0
Sample Output
Yes No
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
vector<int> uv[10005];
vector<int> vu[10005];
int vis[10005];
int n,m,cnt;
int u,v;
void dfs(int u)
{
vis[u]=1;
cnt++;
int len1=uv[u].size();
for(int i=0;i<len1;i++)
{
int v=uv[u][i];
if(!vis[v])
{
dfs(v);
}
}
}
void dfs2(int v)
{
vis[v]=1;
cnt++;
int len2=vu[v].size();
for(int i=0;i<len2;i++)
{
int u=vu[v][i];
if(!vis[u])
{
dfs2(u);
}
}
}
int main()
{
while(scanf("%d%d",&n,&m)&&(n||m))
{
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
uv[i].clear();
vu[i].clear();
}
while(m--)
{
scanf("%d%d",&u,&v);
uv[u].push_back(v);
vu[v].push_back(u);
}
cnt=0;
dfs(1);
if(cnt==n)
{
memset(vis,0,sizeof(vis));
cnt=0;
dfs2(1);
if(cnt!=n)
{
printf("No\n");
}
else
{
printf("Yes\n");
}
}
else
{
printf("No\n");
}
}
return 0;
}
思路:
思路1:按正向边dfs一遍,将经过的节点计数,如果记录的节点的个数小于n,那么就说明图按照正向边就不是连同的,所以就不是强连通图!
然后按照反向边再进行另一个dfs,同样对经过的节点的个数进行计数,如果个数==n则说明正向遍历和反响遍历都是连通的!那么整个图就是强连通的图!
强连通图(Strongly Connected Graph)定义:是指在有向图G中,如果对于每一对vi、vj,vi≠vj,从vi到vj和从vj到vi都存在路径,则称G是强连通图。有向图中的极大强连通子图称做有向图的强连通分量。
其实这个思路并没有用到强连通的算法,只是用dfs利用了强连通的特性来解决的。
思路2:直接套用tarjan算法,求出每一个节点所对应的缩点的值, 如果缩点的个数==1,那么证明就会只有一个强连通分量!也就是强连通图