剑指 Offer 10- I. 斐波那契数列变种

写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

class Solution(object):
    def fib(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n == 0 or n == 1:
            return n
        i = 0
        j = 1
        sum = 0
        for k in range(n):
            sum = i + j
            i = j
            j = sum
        return i%int(1e9+7)

在这里插入图片描述

class Solution {
    public int fib(int n) {
        if(n == 1 || n == 0) {
            return n;
        }
        long i = 0;
        long j = 1;
        long fb = 0;
        for(int b = 2; b <= n; b++) {
            fb = i + j;
            fb = (long)(fb % (1e9+7));
            i = j;
            j = fb;
        }
        
        return (int)fb;
    }
}

在这里插入图片描述

青蛙跳台阶问题

青蛙跳台阶问题,实质上就是动态规划,假设最后一跳(第n次)是一个台阶,或者两个台阶,往旧历史推演,那么第(n-1)次是几个台阶,第(n-2)次,…,第1次。
可以用递归版本的代码先看一下:

class Solution {
    public int numWays(int n) {
        if(n == 1 || n == 0) {
            return 1;
        }
        return numWays(n - 1) + numWays(n - 2);
    }
}

但是递归版本会由于函数栈过多溢出甚至超时,所以需要转为迭代版本。

Java版代码:

class Solution {
    public int numWays(int n) {
        if(n == 1 || n == 0) {
            return 1;
        }
        int i = 1;
        int j = 1;
        int sum = 0;
        while(n >= 2) {
            sum = i + j;
            sum = sum % (1000000007);
            i = j;
            j = sum;
            n -= 1;
        }
        return sum;
    }
}

在这里插入图片描述
python版代码:

class Solution(object):
    def numWays(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n == 0 or n == 1:
            return 1
        i = 1
        j = 1
        sum = 0
        for k in range(2, n+1, 1):
            sum = i + j
            i = j
            j = sum
        return sum % (1000000007)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘先生的u写倒了

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值