写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
class Solution(object):
def fib(self, n):
"""
:type n: int
:rtype: int
"""
if n == 0 or n == 1:
return n
i = 0
j = 1
sum = 0
for k in range(n):
sum = i + j
i = j
j = sum
return i%int(1e9+7)
class Solution {
public int fib(int n) {
if(n == 1 || n == 0) {
return n;
}
long i = 0;
long j = 1;
long fb = 0;
for(int b = 2; b <= n; b++) {
fb = i + j;
fb = (long)(fb % (1e9+7));
i = j;
j = fb;
}
return (int)fb;
}
}
青蛙跳台阶问题
青蛙跳台阶问题,实质上就是动态规划,假设最后一跳(第n次)是一个台阶,或者两个台阶,往旧历史推演,那么第(n-1)次是几个台阶,第(n-2)次,…,第1次。
可以用递归版本的代码先看一下:
class Solution {
public int numWays(int n) {
if(n == 1 || n == 0) {
return 1;
}
return numWays(n - 1) + numWays(n - 2);
}
}
但是递归版本会由于函数栈过多溢出甚至超时,所以需要转为迭代版本。
Java版代码:
class Solution {
public int numWays(int n) {
if(n == 1 || n == 0) {
return 1;
}
int i = 1;
int j = 1;
int sum = 0;
while(n >= 2) {
sum = i + j;
sum = sum % (1000000007);
i = j;
j = sum;
n -= 1;
}
return sum;
}
}
python版代码:
class Solution(object):
def numWays(self, n):
"""
:type n: int
:rtype: int
"""
if n == 0 or n == 1:
return 1
i = 1
j = 1
sum = 0
for k in range(2, n+1, 1):
sum = i + j
i = j
j = sum
return sum % (1000000007)