1.跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
/*
*假设跳上n级台阶共f(n)种跳法
*则最后一次跳跃有两种情况:
*跳1阶,共f(n-1)种跳法
*跳2阶,共f(n-2)种跳法
*有f(n) = f(n-1) + f(n-2),
*又f(1) = 1, f(2) = 2
*所以此数列是一个f(1) = 1, f(2) = 2的一个斐波那契数列
*/
public class Solution {
public int JumpFloor(int target) {
return f(target, 1, 2);
}
private int f(int n, int f1, int f2){
if(n == 0) //阶数为0时
return 0;
if(n == 1)
return f1;
if(n == 2)
return f2;
return f(n - 1, f2, f1 + f2);
}
}
2.矩形覆盖
题目描述
我们可以用21的小矩形横着或者竖着去覆盖更大的矩形。请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
/*
*思路:大矩形2*n小矩形2*1,则摆放方式只有两种:横放和竖放
*横放时小矩形在水平方向上占2格,竖放水平方向占一格
*所以可以理解成n个水平格子,一次只能放一格或两各求几种放法
*可以看出这就是一个跳台阶问题也就是斐波那契数列
*
*/
public class Solution {
public int RectCover(int target) {
if(target <= 0)
return 0;
if(target == 1)
return 1;
if(target == 2)
return 2;
int f1 = 1, f2 = 2;
while(target-- > 2){
f2 += f1;
f1 = f2 - f1;
}
return f2;
}
}
这里用了尾递归和迭代两种方法求斐波那契数列,其他方法可查看【求斐波那契数列的几种方法】