1301. C 循环(扩展GCD)

AcWing 1301. C 循环

题目传送门

做本题之前,可以先做一下这道题,有助于理解:线性同余方程

题目

对于 C 语言的循环语句,形如:

for (variable = A; variable != B; variable += C) statement;

请问在 k 位存储系统中循环几次才会结束。

若在有限次内结束,则输出循环次数。否则输出死循环。

输入格式

多组数据,每组数据一行四个整数 A , B , C , k A,B,C,k A,B,C,k

读入以 0 0 0 0 结束。

输出格式

若在有限次内结束,则输出循环次数。

否则输出 F O R E V E R FOREVER FOREVER
数据范围

1 ≤ k ≤ 32 , 0 ≤ A , B , C < 2 k 1≤k≤32, 0≤A,B,C<2^k 1k32,0A,B,C<2k

输入输出样例

样例输入1

3 3 2 16
3 7 2 16
7 3 2 16
3 4 2 16
0 0 0 0

样例输出1

0
2
32766
FOREVER

思路

数学知识,扩展gcd。题意大致是从 A 开始每次增加 C 直到 B 为止,若一直不会到达数值B,则返回“FOREVER”,否则返回增加的 C 的个数。其中需注意 k 位存储系统中保存 k 位数,即对 2 k 2 ^ k 2k 取模。
设最大公约数 d = g c d ( C , 2 k ) d = gcd(C, 2^k) d=gcd(C,2k)
列出式子,
( A + C + C + … + C )   m o d   2 k = = B (A + C + C + … + C)\ mod\ 2 ^ k == B (A+C+C++C) mod 2k==B
( A + C x )   m o d   2 k = = B (A + Cx)\ mod\ 2 ^ k == B (A+Cx) mod 2k==B
C x   m o d   2 k = = ( B − A ) Cx\ mod\ 2 ^ k == (B - A) Cx mod 2k==(BA)
C x + 2 k y = = ( B − A ) Cx + 2 ^ ky == (B - A) Cx+2ky==(BA)
当且仅当 ( B − A )   %   d = = 0 (B-A)\ \%\ d == 0 (BA) % d==0 时有解,否则陷入死循环。

代码

#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll exgcd(ll a, ll b, ll &x, ll &y) {
    if(!b) {
        x = 1, y = 0;
        return a;
    }
    ll d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}
int main() {
    ll a, b, c;
    int k;
    while(scanf("%lld%lld%lld%d", &a, &b, &c, &k) && (a || b || c || k)) {
        ll x, y;
        ll m = 1ll << k;
        ll d = exgcd(c, m, x, y);
        ll mod = m / d;
        if((b - a) % d) puts("FOREVER");
        else printf("%lld\n", (((b - a) / d * x) % mod + mod) % mod);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值