深度学习的gpu使用率,pytorch,nvidia,资源管理器的gpu效率显示问题

本文探讨如何查看并优化CUDA/GPU使用率,包括设置正确的CUDA版本、驱动更新、nvidia-smi命令的应用,以及解决GPU利用率低和内存不足的问题,重点在于确保环境匹配和驱动兼容性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

查看gpu使用率,

参考:https://blog.csdn.net/qq_43776757/article/details/119674848,https://blog.csdn.net/qq_30159015/article/details/81747491

nvidia-smi -l 1,每1秒刷新一次,

pytorch和cuda以及cudnn

当然首先保证电脑gpu有加速功能,而且安装的驱动满足要求
1,保证在pytorch官网中的cuda和下载的cudnn版本一致
2.保证使用的环境中的cuda就是对应的pytorch对应的版本,因为可以使用多个版本的cuda和环境,一定要注意自己的环境是否对应,
3.nvcc -v,是否是对应的cuda,多版本的cuda切换,就是将cuda的环境变量的顺序调换
可参考:https://editor.csdn.net/md/?articleId=121082441

cmd条件下nvidia-smi,命令后显示的内容

刷新显示命令
nvidia-smi -l 3  # 表示三秒刷新显示 l是L的小写

可以先在官网查看自己的gpu是否有加速计算,下面这个型号GeForce GT730,官网显示是有加速图形计算的能力,算力好像是3.5,但这里显示却是NOT Support,后来发现只需要更新到最新驱动,就可以了,而且gpu的驱动越高向下低版本的cuda toolkit都兼容,(下图是升级了gpu驱动后的)
在这里插入图片描述

前提是有gpu,和已经将路径添加到系统路径中
参考:https://blog.csdn.net/weixin_44010756/article/details/115802349
在这里插入图片描述参数含义:
**GPU Fan:**风扇转速,0–100%
**Perf:**表示性能状态:P0 - P12, P12最小
Pwr:Usage/Cap: 表示GPU功耗
Disp.A:GPU的显示是否初始化
Memory-Usage 表示显存使用量
Volatile GPU-Util表示浮动GPU利用率
Uncorr. ECC错误检查和纠正码
**Compute M.**计算模式

若显示没有该命令,是因为没有将路径添加

查看GPU所有信息

nvidia-smi -q

在这里插入图片描述

电脑资源管理器的显示GPU显示的效率问题

参考:https://news.mydrivers.com/1/687/687715.htm

在这里插入图片描述
从下图看出,GPU的使用率低的可怜。这在进行一个神经网络训练过程中的GPU运行,但一旦增加训练批次中的样本个数就会出现gpu内存不够的情况,这也是不能理解
参考链接中说,gpu也分了好多块,看了一下计算的占用量
在这里插入图片描述
在这里插入图片描述
发现计算几乎占满,但gpu的利用率还是很低,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值