jieba分词的框架图:
特点:
1、支持四种分词模式:
(1)精确模式:试图将句子最精确地切开,适合文本分析;
(2)全模式:把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
(3)搜索引擎模式:在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
(4)paddle模式:利用Paddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。paddle模式使用需安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。paddle官网
目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本需要升级jieba:
pip install jieba --upgrade
2、支持繁体分词
3、支持自定义词典
4、MIT 授权协议
安装说明:
代码兼容 Python 2/3
对python3:
- 全自动安装: pip install jieba:
- 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ ,解压后运行 python setup.py
- install 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
- 通过 import jieba来引用
- 如果需要使用paddle模式下的分词和词性标注功能,请先安装paddlepaddle-tiny,pip install paddlepaddle-tiny==1.6.1。
算法
- 基于前缀词典实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图 (DAG)
- 采用了动态规划查找最大概率路径,找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字成词能力的 HMM 模型,使用了 Viterbi 算法
主要功能
1、分词
-
jieba.cut 方法接受四个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型;use_paddle 参数用来控制是否使用paddle模式下的分词模式,paddle模式采用延迟加载方式,通过enable_paddle接口安装paddlepaddle-tiny,并且import相关代码;
-
jieba.cut_for_search 方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
-
待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
-
jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用jieba.lcut 以及 jieba.lcut_for_search 直接返回 list
-
jieba.Tokenizer(dictionary=DEFAULT_DICT) 新建自定义分词器,可用于同时使用不同词典。jieba.dt 为默认分词器,所有全局分词相关函数都是该分词器的映射。
2、添加自定义词典
载入词典
开发者可以指定自己自定义的词典,以便包含 jieba 词库里没有的词。虽然 jieba 有新词识别能力,但是自行添加新词可以保证更高的正确率
- 用法: jieba.load_userdict(file_name) # file_name 为文件类对象或自定义词典的路径
- 词典格式和 dict.txt 一样,一个词占一行;每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name 若为路径或二进制方式打开的文件,则文件必须为 UTF-8 编码。
- 词频省略时使用自动计算的能保证分出该词的词频。
调整词典
- 使用 add_word(word, freq=None, tag=None) 和 del_word(word) 可在程序中动态修改词典。二者效果对比如下:
add_word(word, freq=None, tag=None):向词典中添加一个词。
freq 和 tag 可以省略,freq 默认为一个计算值
例如:
>>> jieba.add_word("江大桥", freq = 20000, tag = None)
>>> print( "/".join(jieba.cut("江州市长江大桥参加了长江大桥的通车仪式。")))
江州/市长/江大桥/参加/了/长江大桥/的/通车