嗜睡的篠龙
码龄6年
关注
提问 私信
  • 博客:645,609
    社区:1
    视频:1
    645,611
    总访问量
  • 64
    原创
  • 14,857
    排名
  • 0
    粉丝
  • 学习成就

个人简介:要做正确的事,而不是容易的事。 Lifelong learning is all you need~

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:香港
  • 加入CSDN时间: 2018-11-25
博客简介:

weixin_43799388的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    7
    当前总分
    4,521
    当月
    46
个人成就
  • 获得1,442次点赞
  • 内容获得1,104次评论
  • 获得9,703次收藏
  • 代码片获得29,800次分享
创作历程
  • 14篇
    2024年
  • 2篇
    2023年
  • 47篇
    2022年
  • 1篇
    2020年
成就勋章
TA的专栏
  • AI大模型技术积累
    14篇
  • 技术分享
    14篇
  • Pytorch
    1篇
  • 好用的开发工具
    2篇
  • Paddle
  • 3D目标检测
    10篇
  • 常用命令合集
    2篇
  • 模型部署
    1篇
  • 视频剪辑
    1篇
  • 该死的环境安装
  • 又怎么不能解决呢?
    2篇
  • 目标检测
    19篇
  • YOLOv5
    15篇
  • mmdetection
    1篇
  • YOLOv7
    3篇
  • 深度学习
    8篇
  • Python
    5篇
  • 实用技能
    2篇
  • Office
    1篇
  • Latex
  • LeetCode
  • Markdown
    2篇
  • 保研
    3篇
兴趣领域 设置
  • Python
    python
  • 人工智能
    人工智能
  • 数学
    线性代数概率论
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【多模态大模型】Qwen2-VL基本原理和推理部署实战

具体实现代码地址:https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py。具体实现代码地址:https://github.com/QwenLM/Qwen2-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py。Qwen2 VL的一个关键架构改进是引入了原生动态分辨率支持。
原创
发布博客 2024.09.21 ·
2858 阅读 ·
52 点赞 ·
1 评论 ·
60 收藏

【大模型训练】Flash Attention详解

FlashAttention系列工作,是一种加速注意力计算方法,目前已经应用在:GPT-3、Falcon2(阿联酋大模型)、Llama2、Megatron-LM、GPT-4等流行LLM上。并且FlashAttention2已经集成到了pytorch2.0中,可以很便捷的调用。1. FlashAttention动机,可以看出由于Transformer中self-attention 的时间和内存复杂度是序列长度的二次方,所以序列过长时,算法速度会变慢,需要消耗很高的内存,导致低效的。
原创
发布博客 2024.09.13 ·
1514 阅读 ·
21 点赞 ·
0 评论 ·
30 收藏

【大模型推理】vLLM推理库介绍及部署qwen2实战教程

2023年6月,来自加州大学伯克利分校等机构的一个研究团队开源了 vLLM项目,其使用了一种新设计的注意力算法 PagedAttention,可让服务提供商轻松、快速且低成本地发布 LLM 服务。在vLLM团队发布的论文中,详细解释了如何通过类似操作系统虚拟内存管理的机制来实现高效的 LLM 服务。该论文已被将于十月底在德国举办的 ACM 操作系统原理研讨会(SOSP 2023)接收:CodePaper为了解决上述限制,vLLM团队提出了一种注意力算法 PagedAttention;该算法的灵感来自。
原创
发布博客 2024.09.13 ·
1663 阅读 ·
25 点赞 ·
0 评论 ·
21 收藏

【大模型推理】KV Cache原理

这里要注意一点,因为 现在大模型基本都是Decoder-only的架构 ,自回归生成的过程中,当前token在做attention计算时是看不到后面的,后面的内容都被 mask 了。目前各种框架,针对 KV Cache 做了优化,比如 vLLM 的 Page Attention, Prefix Caching,Token 的稀疏化,KV 共享或者压缩(MQA、GQA 和 MLA),LayerSkip,Mooncake 等等,可以说。,各种基于 KV Cache 的优化方法撑起了大模型推理加速的半壁江山。
原创
发布博客 2024.09.12 ·
616 阅读 ·
5 点赞 ·
0 评论 ·
8 收藏

【大模型推理】大模型前向推理过程详解

为了搞清楚,大模型前向推理的具体流程,本文以Qwen2-7B-Instruct为例,通过直接debug官方推理示例,来深入理解其过程。
原创
发布博客 2024.09.11 ·
852 阅读 ·
16 点赞 ·
0 评论 ·
8 收藏

【大模型结构】输出参数配置

大家在体验大语言模型或者多模态大模型的开源应用时,经常会看到类似下面这个页面,用来控制大模型输出的一些参数设置:这些参数设置会直接影响大模型的输出多样性和质量,因此很多面试官都喜欢通过提问这些参数的含义或者使用技巧,来考察首选人对大模型的掌握程度。本文主要介绍以及这几个核心参数的含义及使用技巧。
原创
发布博客 2024.09.11 ·
1212 阅读 ·
18 点赞 ·
0 评论 ·
16 收藏

【大模型结构】不同技术架构的区别

近几年的大语言模型的技术起点,可以从Google发布的BERT开始算起。此前,最好的语言模型属于RNN一类,但是,由于RNN模型需要按次序处理输入数据,因此并行能力不够,计算成本很高。尽管在翻译领域效果很好,但是RNN也没有取得更好的突破。BERT是一种Transformer架构的模型,它的出现,让语言模型突破了原有的限制,可以以更快的速度运行,并且可以记住更长久的输入数据。Transformer相比RNN具有更长依赖建模的能力,更高的计算复杂度以及更好的并行处理能力。
原创
发布博客 2024.09.10 ·
901 阅读 ·
15 点赞 ·
0 评论 ·
29 收藏

【机器学习】使用Numpy实现神经网络训练全流程

曾经在面试一家大模型公司时遇到的面试真题,当时费力写了一个小时才写出来,自然面试也挂了。后来复盘,发现反向传播掌握程度还是太差,甚至连梯度链式传播法则都没有弄明白。
原创
发布博客 2024.09.10 ·
1170 阅读 ·
16 点赞 ·
0 评论 ·
18 收藏

【Transformer】Post-Norm和Pre-Norm

Post Norm对模型,尤其是较深的模型训练不稳定,梯度容易爆炸,学习率敏感,初始化权重敏感,收敛困难。因此需要做大量调参工作,以及learning rate warm up的必要工作,费时费力潜在好处是,在效果上的优势,但是这个事情还需要大量专业的实验来验证,毕竟现在大模型训练太费钱了,Post Norm 在效果上带来的提升很可能不如多扔点数据让 Pre Norm 更快的训练出来Pre Norm在训练稳定和收敛性方面有明显的优势,所以大模型时代基本都无脑使用 Pre Norm 了。
原创
发布博客 2024.09.09 ·
988 阅读 ·
29 点赞 ·
0 评论 ·
23 收藏

【Transformer】Positional Encoding

首先贴上Transformer论文中,对于Positional Encoding部分的全部介绍:我真的服了,这么重要的位置编码,论文里就写了这么一点??现在看来,内容虽然少,但是句句都是关键,每一句都是面试官想要考你的点,蚌埠住了!位置编码的维度和token的embedding的维度一致,所以可以直接add,也就是同时使用正弦函数和余弦函数来表示每个token的绝对位置在中,包括两个关键变量,一个是pos,表示 是哪个token,另一个是i,表示token中不同embedding的位置。
原创
发布博客 2024.09.08 ·
869 阅读 ·
25 点赞 ·
0 评论 ·
19 收藏

【Transformer】Tokenization

从上面这个例子可以看出,理想的Subword分词方法应该是把不常见的单词,按照词形变化、复数形式等拆分为不同的token,同时保留token之间的关系,这样就可以最大可能保留句法和语义相似性。这样,当模型在处理新的文本或任务时,就能够利用它学到的vocabulary来生成合适的回答或文本。基于Subword的分词方法,旨在实现基于Word和基于Character的方法的优点,同时最大限度地减少它们的缺点。,也就是一系列离散的字符(单词,单词的一部分,或者是字母),这些符号可以进一步被编码成二进制形式。
原创
发布博客 2024.09.04 ·
1001 阅读 ·
14 点赞 ·
0 评论 ·
29 收藏

【Transformer】基本概述

的核心思想,就是抛弃传统的递归(recurrence)或者卷积(convolutions)模块,完全采用注意力机制(attention mechanisms),允许模型在处理序列的每个元素时,都能考虑到序列中的所有其他元素,因此,这种机制就使得模型能够更好地捕捉序列内部的长距离依赖关系。下图是原始论文中的结构图,我把它按照重要程度划分为了7个部分,其中红色的前五个部分最为重要(面试官最喜欢考验候选人的部分),必须要深入理解和掌握,蓝色的后两个部分是相对次要但也要深入理解。
原创
发布博客 2024.09.02 ·
1034 阅读 ·
12 点赞 ·
0 评论 ·
15 收藏

【Transformer】Normalization

Normalization,也就是归一化(或者叫标准化)操作,已经广泛应用于神经网络模型中,成为必不可少的组件。保证训练稳定性:当训练更深的神经网络时,计算反向传播的参数往往是指数级变化,太大或者太小的参数送入激活函数后很容易造成梯度爆炸或者梯度消失,因此Normalization就使得每一层激活函数的输入,可以控制在近似理想的数值区间中,使得训练更加稳定。
原创
发布博客 2024.09.02 ·
1227 阅读 ·
24 点赞 ·
0 评论 ·
8 收藏

【AI大模型】相关知识梳理

为了系统性梳理AI,大模型,训练和推理,数学,机器学习,python等基础知识,并在此基础上深入理解经典论文,本人将持续更新有关这些方向的基础知识博客,博客 将保持一如既往的 通俗易懂的风格。并且结合代码来深入理解。
原创
发布博客 2024.09.01 ·
622 阅读 ·
4 点赞 ·
0 评论 ·
9 收藏

单目3D目标检测经典数据集:kitti-mini

发布资源 2023.05.20 ·
rar

【Python】实用小脚本

一些实用但又没用的python脚本
原创
发布博客 2023.05.18 ·
868 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

【单目3D目标检测】MonoDDE论文精读与代码解析

MonoDDE:充分利用了多样化的深度信息并进行优化集成,刷点很高
原创
发布博客 2023.03.06 ·
1635 阅读 ·
3 点赞 ·
6 评论 ·
5 收藏

【单目3D目标检测】MonoCon论文精读与代码解析

MonoCon:在MonoDLE的基础上增加辅助学习模块,效果非常work
原创
发布博客 2022.12.27 ·
2176 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

【单目3D目标检测】MonoDLE论文精读与代码解析

MonoDLE,基于CenterNet在KITTI数据集做的单目3D目标检测工作,非常优秀且经典!!
原创
发布博客 2022.12.26 ·
2649 阅读 ·
3 点赞 ·
3 评论 ·
10 收藏

【单目3D目标检测】MonoFlex论文精读与代码解析

单目3D目标检测经典论文:MonoFlex,对截断物体进行处理,同时增加几何深度估计
原创
发布博客 2022.12.08 ·
3867 阅读 ·
4 点赞 ·
6 评论 ·
27 收藏
加载更多