目录
百度经验:echarts 自定义数据、json数据引入、后台数据引入七、相关图片
一、数据可视化
相关可视化工具有:Matlab Echarts D3.js Pathon语言相关数据可视化包(Matplotlib pandas seaborn ggplot Plotly Express Bokeh Pygal) R语言相关可视化库 Highcharts......
二、Echarts总描述
echart是可视化工具,提供很多可视化库,个人和商用免费。不仅支持key-value键值对存储数据,还支持TypeArray格式数据。同时可以通过下载GL插件制作更加绚丽的三维可视化图表。
支持canvas像素点画图和SVG对象模型通过标签组成高保真图像两种作图方式。Echarts提供了图例、视觉映射、数据区域缩放、Tooltip、数据筛选等交互组件,可对数据进行多维度筛选、视图缩放、展示细节等交互操作。
eg:直角坐标系:网格坐标轴、标题组件、图例组件、工具箱组件、详情提示框组件、标记线与标记点。
三、Echarts常见名词描述
名词 | 描述 |
---|---|
title | 标题组件,设置图表标题 |
xAxis | 横轴,通常默认类目型 |
yAxis | 纵轴,通常默认数值型 |
grid | 除坐标轴外的绘图网格,用于定义直角系整体布局 |
legend | 图例组件,表述数据和图形关联。 |
markPoint | 标记点,标记特定点 |
markLine | 标记线,标记特定值 |
dataZoom | 数据区域缩放,用于展示大量数据时选择可视范围 |
visualMap | 视觉映射组件,用于将数据映射到视觉元素 |
toolbox | 工具箱组件,用于为图表添加辅助功能,如标线、框选缩放等 |
tooltip | 提示框组件,展示更详细数据 |
timeline | 时间轴,展示同一系列数据在时间维度上的多份数据 |