暴力回溯
拿到题第一反应可以用回溯,暴力搜一下,果不其然,超时了
代码
//暴力回溯
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
return traceback(strs,m,n,0,0,0);
}
public int traceback(String[] strs,int m,int n,int a, int b,int cur){
if (cur>=strs.length) return 0;
int num0=0,num1=0;
String s=strs[cur];
for (int i=0;i<s.length();i++){
if (s.charAt(i)=='0') num0++;
if (s.charAt(i)=='1') num1++;
}
if (num0+a>m||num1+b>n){
return traceback(strs,m,n,a,b,cur+1);
}
else return Math.max(traceback(strs,m,n,a,b,cur+1),1+traceback(strs,m,n,a+num0,b+num1,cur+1));
}
}
动态规划0-1背包
再想想,好像可以用0-1背包来解:
- 定义dp数组下标及含义:
dp[m][n]
表示容量0为m,容量1为n的背包,能装下的最多的字符串的长度 - dp数组推导公式:这道题的推导和之前做的那个目标和的题很像,假设现在遍历到第i个字符串,那么有两种情况,要么放这个字符串进来,要么不放。如果放它进来,那么
dp[m][n] = 1 + dp[m-a][n-b]
,其中a是字符串i中0的个数,b是字符串i中1的个数;如果不放,那么它就不变。我们取这两种情况下最大的那个就好。 - dp数组初始化。全部初始化为0就可以了。
- 遍历顺序:我们这里相当于是二维背包,背包有两个限制,所以其实用的思路和之前的一维背包的一维数组是一样的,这里二维背包的二维数组,依然是从后往前遍历,不然还是会有覆盖dp数组的情况出现
- 举例推导,拿笔推导一下,没什么问题
代码
//动态规划
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp=new int[m+1][n+1];
for (int i=0;i<strs.length;i++){
int a=num(strs[i],'0');
int b=num(strs[i],'1');
for (int j=m;j>=a;j--){
for (int k=n;k>=b;k--){
dp[j][k]=Math.max(dp[j][k],1+dp[j-a][k-b]);
}
}
}
return dp[m][n];
}
public int num(String s, char a){
int n=0;
for (int i=0;i<s.length();i++){
if (s.charAt(i)==a) n++;
}
return n;
}
}