[leetCode 474] 一和零(二维0-1背包)

暴力回溯

拿到题第一反应可以用回溯,暴力搜一下,果不其然,超时了

代码

//暴力回溯
class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        return traceback(strs,m,n,0,0,0);
    }
    public int traceback(String[] strs,int m,int n,int a, int b,int cur){
        if (cur>=strs.length) return 0;
        int num0=0,num1=0;
        String s=strs[cur];
        for (int i=0;i<s.length();i++){
            if (s.charAt(i)=='0') num0++;
            if (s.charAt(i)=='1') num1++;
        }
        if (num0+a>m||num1+b>n){
            return traceback(strs,m,n,a,b,cur+1);
        }
        else return Math.max(traceback(strs,m,n,a,b,cur+1),1+traceback(strs,m,n,a+num0,b+num1,cur+1));
    }
}

动态规划0-1背包

再想想,好像可以用0-1背包来解:

  1. 定义dp数组下标及含义:dp[m][n]表示容量0为m,容量1为n的背包,能装下的最多的字符串的长度
  2. dp数组推导公式:这道题的推导和之前做的那个目标和的题很像,假设现在遍历到第i个字符串,那么有两种情况,要么放这个字符串进来,要么不放。如果放它进来,那么dp[m][n] = 1 + dp[m-a][n-b],其中a是字符串i中0的个数,b是字符串i中1的个数;如果不放,那么它就不变。我们取这两种情况下最大的那个就好。
  3. dp数组初始化。全部初始化为0就可以了。
  4. 遍历顺序:我们这里相当于是二维背包,背包有两个限制,所以其实用的思路和之前的一维背包的一维数组是一样的,这里二维背包的二维数组,依然是从后往前遍历,不然还是会有覆盖dp数组的情况出现
  5. 举例推导,拿笔推导一下,没什么问题

代码

//动态规划
class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        int[][] dp=new int[m+1][n+1];
        for (int i=0;i<strs.length;i++){
            int a=num(strs[i],'0');
            int b=num(strs[i],'1');
            for (int j=m;j>=a;j--){
                for (int k=n;k>=b;k--){
                    dp[j][k]=Math.max(dp[j][k],1+dp[j-a][k-b]);
                }
            }
        }
        return dp[m][n];
    }
    public int num(String s, char a){
        int n=0;
        for (int i=0;i<s.length();i++){
            if (s.charAt(i)==a) n++;
        }
        return n;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值