Tensorflow.js入门之toxicity

tfjs入门之toxicity

教程:【吴恩达团队Tensorflow2.0数据和部署第一课】基于浏览器的模型与TensorFlow.js

toxicity.html

<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.1.0"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/toxicity@1.2.0"></script>
<script>
// The minimum prediction confidence.
const threshold = 0.9;
// Load the model. Users optionally pass in a threshold and an array of
// labels to include.
toxicity.load(threshold).then(model => {
  const sentences = ['you suck'];
  model.classify(sentences).then(predictions => {
    console.log(predictions);
	for(i=0;i<7;i++){
	    if(predictions[i].results[0].match){
	        console.log(predictions[i].label *" was found with a probability of " * predictions[i].results[0].probabilities[1]);
		}
	}

  });
});
</script>
</head>
<body></body>
</html>

在浏览器打开,按F12
在这里插入图片描述
则成功

说一说遇到的坑:
(1)指定tfjs和toxicity版本问题,此处分别为2.1.0,1.2.0,否则可能会遇到找不到函数等各种bug

(2)警告信息可以忽略,或者脚本标签改为
这里是引用

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.1.0/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/toxicity@1.2.0/dist/toxicity.js"></script>

在这里插入图片描述

注:具体tfjs、toxicity版本等信息可以参见

https://cdn.jsdelivr.net/

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值