- 博客(24)
- 问答 (1)
- 收藏
- 关注
原创 用AI做带货视频评论分析【Datawhale AI 夏令营】
本文介绍了一个利用AI分析电商带货视频用户评论的实战项目。通过NLP和大模型技术,从6477条评论数据中挖掘商业价值,主要包括:1) 识别评论提及的商品;2) 进行多维情感分析(正面/负面/中性,以及场景、疑问、建议等属性);3) 对特定维度的评论聚类并提炼主题词(如"性价比"等)。项目采用TF-IDF编码+SGDClassifier分类器+KMeans聚类的基础方案,同时探讨了使用大模型提升效果的思路。最终产出可帮助品牌方优化选品、评估带货效果,实现数据驱动的商业决策。
2025-07-11 23:00:10
658
原创 1️⃣理解大语言模型
下图是简化版的transformer架构:transformer架构由两个子模块组成:编码器和解码器。编码器和解码器都是由多个层通过自注意力机制相连。类别作用例子编码器处理文本输入,将其编码为一系列数值表示或向量,以捕捉输入的上下文信息翻译任务1:编码器将原语言文本编码为向量解码器利用编码向量生成输出文本翻译任务2:解码器会将这些向量解码为目标语言的编码。
2025-07-09 23:13:10
591
1
原创 4090 cuda12.8安装vllm
vllm官方二进制文件默认支持cuda 12.1和11.8,cuda12.8通常可以向下兼容cuda 12.1。
2025-07-01 14:02:23
247
原创 FastAPI 基础入门(五)
Pydantic是一个使用Python类型注解进行数据验证和管理的模块。它可以在代码运行时强制进行类型验证,当数据类型不符或数据无效时抛出友好的错误提示。这个功能可让开发者及时了解错误信息。FastAPI框架整合了Pydantic,以求为开发者提供更多便利。❑ 支持使用Python的类型提示来定义数据模型,这使得代码更加易于阅读和维护。❑ 提供了一些内置的验证器,可以对输入数据进行验证,确保输入的数据类型、格式、范围等符合预期。❑ 自动解析并验证请求中的视图函数参数、查询参数以及Body参数等。
2025-06-29 14:05:37
721
原创 yolo[datawahle](2)
在torch.nn中其实有一个BCELoss的实现,还有一个BCEWithLogitsLoss,在下面的代码里,我们可视化了CustomBCELoss和nn.BCELoss的Prediction值的分布和并进行了Gradient值的比较,测试结果显示CustomBCELoss和官方实现的nn.BCELoss效果基本相同。但是我们希望,目标边界的分布最好能够满足真实值附近的概率较大,这样可以快速收敛于理想值,因此,我们使用DFL作为损失函数,得到一个理想的边界分布。BCE:二元交叉熵损失。
2025-06-21 00:14:15
575
原创 YOLO-Master[datawhale](1)
参考🔗:https://wvet00aj34c.feishu.cn/docx/U8STd5txXod1R5xhrrmcZh9fnTf**目标检测的背景:**目标检测是计算机视觉中一项关键任务,应用于自动驾驶、安防监控、无人机导航和智能家居等领域。主要解决2个问题:1)**物体分类:**确定图像中物体的类别2)**定位问题:**精确地找到每个物体的具体位置,通常用边界框表示**YOLO(You Only Look Once)😗*讲目标检测视为一个单一的回归问题,通过一个卷积神经网络一次性完成图像中所有物体
2025-06-17 21:54:56
1095
原创 FastAPI基础入门(四)
自定义异常可以继承自Exception或者其他已经实现的Exception类的子类。raise CustomException(message='抛出自定义异常')自定义了一个CustomException异常,并且通过@app.exception_handler(CustomException)装饰器进行了全局CustomException异常的捕获处理。
2025-06-12 16:53:43
563
原创 FastAPI基础入门(三)
swagger-ui.css和swagger-ui-bundle.js资源是从第三方的cdn服务商上加载的,第三方服务cdn服务出现问题会导致无法加载可视化API文档界面。为避免这种情况,可以自定义(或改造)并渲染html模版中的一些变量,让swagger-ui.css和swagger-ui-bundle.js等静态资源从本地进行加载。# 确保静态文件目录存在import os。
2025-06-11 21:54:23
925
原创 FastAPI(一、二)
FastAPI框架不仅具有Flask或Django的Web核心功能,还兼具异步特性,可以同时兼容同步和异步这两种模式的运行。也就是说,用户可以使用同步的方式编写API,也可以使用异步的方式来编写API。官方文档。
2025-05-14 00:53:07
1086
原创 AI预测蛋白质(AI4S)——datawhale春训营
本次赛题的核心是IDRs预测问题,需要参赛者基于给定的蛋白质序列信息,准确预测蛋白质的内在无序区域。在生物体系中,蛋白质并非总是维持着固定的刚性结构,相当一部分蛋白质或其部分区域处于无序状态,即所谓的内在无序蛋白(IDPs)以及蛋白质中的无序区域(IDRs)。通过对反应中所包含的蛋白质残基信息,运用机器学习模型或者深度学习模型构建蛋白质3D结构的隐式模型,从而达成准确预测蛋白质内在无序区域(IDRs)的目的。相关数据集 :多种蛋白质的序列信息和对应的由实验方式获取的内在无序区域(IDRs)
2025-05-06 12:37:40
1000
原创 [AI+新能源]Task2 整体流程——Datawhale AI 春训营
数据探索性分析,是通过了解数据集,了解变量间的相互关系以及变量与预测值之间的关系,对已有数据在尽量少的先验假设下通过作图、制表、方程拟合、计算特征量等手段探索数据的结构和规律的一种数据分析方法,从而帮助我们后期更好地进行特征工程和建立模型,是机器学习中十分重要的一步。观测上步代码结果可知气象数据中新能源场站每个小时的数据维度为 2 (11x11),但构建模型对于单个时间点的单个特征只需要一个 标量 即可,因此我们把 11x11 个格点的数据取均值,从而将二维数据转为单一的标量值。
2025-04-19 23:33:05
624
原创 [AI+新能源]Task1 baseline
本次大赛提供覆盖多个场景的新能源场站历史发电功率数据和对应时段多类别气象预测数据,预测次日零时起到未来24小时逐15分钟新能源场站发电功率。气象源1(NWP_1)、气象源3(NWP_3): [u100, v100, t2m, tp, tcc, sp, poai, ghi], 气象源2(NWP_2): [u100, v100, t2m, tp, tcc,msl,poai,ghi]统计精度时,每个场站每天单独计算一个精度值,并对其在所有评测天数内的精度值求平均,得到该场站的整体精度。为所有预测日的精度平均值。
2025-04-15 21:44:25
879
原创 datawhale&ch6量化调仓策略
风险是指在未来可能发生的不确定性事件所带来的潜在损失。在投资领域中,风险通常指投资所面临的不确定性和潜在的损失。投资的风险通常由多种因素决定,包括市场波动、政治和经济环境、行业和公司的基本面等。投资的风险越高,意味着投资者可能面临更大的损失,但同时也可能获得更高的回报。等权重市值加权最小方差组合最大分散度风险平价没有任何信息或者偏好时,等权重是最简单的办法,即赋予组合中每个证券相同的权重,意味着我们视每个证券具有同等的重要性。
2024-10-30 00:36:44
988
原创 datawhale&ch5量化择时策略
量化择时策略,采用数量化分析方法,利用单个或多个技术指标的组合,来对交易标的股票或股票指数进行低买高卖的操作,期望获得超越简单买入持有策略的收益风险表现。量化择时策略的核心是技术分析,更准确地来说,是客观型技术分析。客观型技术分析,是指其分析过程中所用到的分析方法,具有100%客观的定义标准,不含有任何主观定义的部分。
2024-10-28 23:43:40
1269
原创 datawhale&ch4量化选股策略
本节主要了解了为什么需要选股、 单/多因子选股模型、常见的因子分类以及常见的因子有效性检验方法、行业与市值中性化和python多因子选股策略实践。
2024-10-26 00:26:00
1113
原创 datawhale&ch3股票数据获取学习
①移动平均线通过计算一段时间内的股票平均价额来平滑价格波动。常见的移动平均线有简单移动平均线(SMA)和指数移动平均线(EMA)简单移动平均线(SMA)simple moving average:简单移动平均线是最基本的移动平均线类型。通过一段时间内的股票收盘价相加,然后除以时间段的天数来计算的。简单移动平均线可以平滑价格波动,显示出长期趋势。指数移动平均线(EMA)exponential moving average:指数移动平均线对近期价格给与更高的权重,反映了市场更近期的变化。
2024-10-22 23:50:51
775
原创 langchain+neo4j 实现图谱GraphRAG
参考文档:https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/源代码参考复现:https://github.com/tomasonjo/blogs/blob/master/llm/enhancing_rag_with_graph.ipynb?3.后续需要调整代码,限制节点的类型,以及关系的类型。② 构建结构化的检索器。
2024-06-24 14:23:48
4883
12
原创 Failed to initialize NVML: Driver/library version mismatch
6.由于自动更新,版本才会不匹配,所以需要关闭自动更新。出现当前的版本是550.67。显示的是550.54.15。4.切换到root账户。
2024-06-12 16:19:13
669
原创 fastgpt部署-chatglm3-6b
在执行docker-compose pull 以及docker-compose up -d。(chatGlm3运行的是:api_server.py )2.创建令牌,如果没有对应的模型可以在渠道自行填入编辑。1.部署渠道,点击测试查看端口连接200即连接正确。修改配置文件 docker-compose.yml。
2024-05-20 12:23:02
332
原创 OSError: [E050] Can‘t find model ‘en_core_web_sm‘. It doesn‘t seem to be a Python package or a valid
spacy与en_core_web_sm的版本需要对应安装。3.尝试直接下载en_core_web_sm,显示失败。输入pip list便可以看到安装成功了。将其放入你使用的python环境中。
2023-10-11 14:13:36
855
1
空空如也
nlp_毕业论文&命名实体识别&关系抽取
2022-01-26
TA创建的收藏夹 TA关注的收藏夹
TA关注的人