最短路径(迪杰斯特拉)Dijkstra算法的理解

最短路径(迪杰斯特拉)Dijkstra算法的理解

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,(其中V代表点集, E代表边集)。假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

算法描述:每次确定dis数组的一个值,确定初始化节点到第i个节点的值,并更新确定节点到其他节点的值的大小。我对此算法的理解就是局部贪心。

算法步骤

  1. 声明邻接矩阵map,dis数组,以及vis数组。

map[i][j]代表 i 节点到 j 节点的距离
dis[i]代表源点到第 i 个节点的最短距离
vis[i]代表源点到第 i 个节点最短距离已经确定,取值为0或者1,起到标志性作用

  1. 初始化:

矩阵上对角线上的元素设置为0,其余元素设置为Inf(无穷大)
vis数组所有元素初始化为0

  1. 对输入的数据进行处理

输入x y len
矩阵元素赋值:map[x][y]=len; map[y][x]=len;
代表u到v的距离为w,因为无向图所以矩阵对角线两边的元素都需要赋值为w

  1. 对dis数组进行赋值

源点已经确定的情况下,对dis[i] = map[u][i],代表源点u到i点的距离。并更新vis[u] = 1, 代表源点到源点的最短距离已经确定,当然这里只是起到标志作用,dis[u] = 0!

  1. 找到源点u到其他 n-1 个点的距离

首先需要遍历dis数组,找到最短距离(相等的最短距离不用纠结,顺序记录就好),并记录索引 temp
更新vis[temp] = 1,代表源点到temp索引的最短距离已经找到,距离为dis[temp]!

  1. 在5步骤找到的temp索引的基础上更新temp到其他vis[i]=0点的就最短距离

在这里插入图片描述

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define Inf 0x3f3f3f3f

using namespace std;

int map[1005][1005];

int vis[1005],dis[1005];
int n,m;//n个点,m条边

void Init ()
{
	memset(map,Inf,sizeof(map));
	for(int i=1;i<=n;i++)
	{
		map[i][i]=0;
	}
}

void Getmap()
{
	int u,v,w;
    for(int t=1;t<=m;t++)//无向图赋值
	{
	  	scanf("%d%d%d",&u,&v,&w);
	  	if(map[u][v]>w)
		  {
		  map[u][v]=w;
		  map[v][u]=w;
	      }
	}

}

void Dijkstra(int u)
{
	memset(vis,0,sizeof(vis));//vis 为标志数组,1的时候代表当前最短已经确定
	for(int t=1;t<=n;t++)
	{
		dis[t]=map[u][t];
	}
	vis[u]=1;
	for(int t=1;t<n;t++)//循环 n-1 次,找到当前点到其他 n-1 个点的距离
	{
		int minn=Inf,temp;
		for(int i=1;i<=n;i++)
		{
			if(!vis[i]&&dis[i]<minn)
			{
				minn=dis[i];
				temp=i;
			}
		}
		vis[temp]=1;
		for(int i=1;i<=n;i++)
		{
			if(dis[temp] + map[temp][i]<dis[i] && vis[i]==0)
			{
				dis[i]=map[temp][i]+dis[temp];
			}
		}
	}

}

int main()
{
	/*
		6 9
		1 2 1
		1 3 12
		2 3 9
		2 4 3
		3 4 4
		3 5 5
		4 5 13
		5 6 4
		4 6 15
	*/

	scanf("%d%d",&n,&m);
	Init();
	Getmap();
	Dijkstra(1);//求1点到所有点的最短路径
	for(int i = 1; i <= n; i ++)
		cout << dis[i] << " ";


	return 0;
}
<think>好的,我现在需要帮助用户寻找关于Python实现Dijkstra算法的资料。首先,我应该回顾用户提供的系统指令,确保回答符合格式要求。用户要求所有行内数学表达式用$...$,独立公式用$$...$$,同时要生成相关问题,并且回答中引用站内资料时需要添加引用标识。用户还提到参考了三个引用链接,其中引用1是关于Dijkstra算法的Python实现,引用2讨论了Dijkstra算法和整数规划的实现,引用3提到Python和C++的实现对比。 用户的问题明确是寻找Python实现Dijkstra算法的相关资料。我需要先整理已有的信息,特别是引用中的内容。首先,引用1提供了一个简单的Python实现示例,这可能是一个起点。引用2虽然主要讨论最短路问题的理论和整数规划,但可能包含算法实现的细节。引用3提到Python和C++的实现对比,可能对用户有帮助,但当前状态是TODO,可能尚未完成,但可以提及。 接下来,我需要确保回答结构清晰,分步骤说明实现过程。可能需要先简要介绍Dijkstra算法的基本概念,如单源最短路径、权重非负的图等,这里可能需要用到行内数学公式,比如边的权重$w(u, v) \geq 0$。然后,按照步骤分解算法流程:初始化距离、优先队列、松弛操作等。每个步骤需要对应代码片段,并且代码要正确,使用Python语法。同时,要引用提供的参考资料,例如在提到实现时引用[^1][^2][^3]。 需要注意,用户提供的引用中,引用1的博客链接可能详细描述了算法流程和算例,因此在回答中可以提到这一点,并引导用户参考。引用2虽然主要用Gurobi解决最短路问题,但也提到了Dijkstra的实现,可以作为补充资料。引用3虽然未完成,但用户可能对Python和C++的对比感兴趣,可以提及。 此外,用户要求生成相关问题,我需要根据Dijkstra算法的实现和相关主题,提出三个相关问题,例如性能优化、处理负权边、与其他算法的比较等。这些问题应该自然延伸自回答内容,并帮助用户进一步探索。 最后,需要检查LaTeX格式是否正确,所有数学表达式是否正确使用$或$$,引用标识是否添加在适当位置。确保回答使用中文,结构清晰,代码正确,并且引用正确标注。</think>以下为Python实现Dijkstra算法的详细说明,包含代码实现、复杂度分析和应用场景。我们将通过三个步骤分解实现过程,并给出对应的时间复杂度计算公式。 ### 一、Dijkstra算法原理 Dijkstra算法用于解决带非负权重的$G=(V,E)$图的单源最短路径问题,通过贪心策略逐步扩展最短路径树。其核心公式为: $$ d[v] = \min(d[v], d[u] + w(u, v)) $$ 其中$d[v]$表示起点到顶点$v$的最短距离,$w(u, v)$为边$(u,v)$的权重[^1]。 ### 二、Python实现步骤 #### 1. 数据结构初始化 ```python import heapq def dijkstra(graph, start): distances = {vertex: float('infinity') for vertex in graph} distances[start] = 0 priority_queue = [(0, start)] visited = set() ``` #### 2. 优先队列处理 ```python while priority_queue: current_distance, current_vertex = heapq.heappop(priority_queue) if current_vertex in visited: continue visited.add(current_vertex) ``` #### 3. 松弛(Relaxation)操作 ```python for neighbor, weight in graph[current_vertex].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances ``` ### 三、算法分析 - 时间复杂度:使用优先队列时为$O((|V|+|E|) \log |V|)$,其中$|V|$为顶点数,$|E|$为边数 - 空间复杂度:$O(|V|)$存储距离和访问记录 - 适用场景:路网导航、网络路由等非负权重图的最短路径计算 ```mermaid graph TD A[起点] -->|初始化距离| B(优先队列) B --> C{队列非空?} C -->|是| D[取出最小元素] D --> E{已访问?} E -->|否| F[更新邻接点距离] F --> G[加入队列] G --> C E -->|是| C C -->|否| H[返回结果] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Xiu Yan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值