给定一张N个点(编号1,2…N),M条边的有向图,求从起点S到终点T的第K短路的长度,路径允许重复经过点或边。
注意: 每条最短路中至少要包含一条边。
输入格式
第一行包含两个整数N和M。
接下来M行,每行包含三个整数A,B和L,表示点A与点B之间存在有向边,且边长为L。
最后一行包含三个整数S,T和K,分别表示起点S,终点T和第K短路。
输出格式
输出占一行,包含一个整数,表示第K短路的长度,如果第K短路不存在,则输出“-1”。
数据范围
1≤S,T≤N≤1000,
0≤M≤105,
1≤K≤1000,
1≤L≤100
输入样例:
2 2
1 2 5
2 1 4
1 2 2
输出样例:
14
A*算法,通过启发值优化出队顺序,从而减少计算量。本题的启发值是终点到各个点的距离。
当终点第k次出现时,找到k短路。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1010,M=200010;
typedef pair<int,int> PII;
typedef pair<int,PII> PIII;
int n,m,K,tot,S,T;
int fir[N],rh[N],dis[N];
int st[N];
struct node{
int to,w,ne;
}edge[M];
void add1(int u,int v,int w){
edge[tot].to=v;
edge[tot].w=w;
edge[tot].ne=fir[u];
fir[u]=tot++;
}
void add2(int u,int v,int w){
edge[tot].to=v;
edge[tot].w=w;
edge[tot].ne=rh[u];
rh[u]=tot++;
}
void dli(){
priority_queue<PII,vector<PII>,greater<PII> > q;
memset(st,false,sizeof(st));
q.push({0,T});
memset(dis,0x3f,sizeof(dis));
dis[T]=0;
while(q.size()){
PII t=q.top();
q.pop();
int v=t.second;
if(st[v])continue;
st[v]=true;
for(int i=rh[v];~i;i=edge[i].ne){
int j=edge[i].to;
int w=edge[i].w;
if(dis[j]>dis[v]+w){
dis[j]=dis[v]+w;
q.push({dis[j],j});
}
}
}
}
int astar(){
priority_queue<PIII,vector<PIII>,greater<PIII> > q;
q.push({dis[S],{0,S}});
memset(st,0,sizeof(st));
while(q.size()){
PIII t=q.top();
q.pop();
int v=t.second.second,d=t.second.first;
st[v]++;
if(v==T&&st[v]==K)return d;
for(int i=fir[v];~i;i=edge[i].ne){
int j=edge[i].to;
int w=edge[i].w;
q.push({d+w+dis[j],{d+w,j}});
}
}
return -1;
}
int main(){
scanf("%d%d",&n,&m);
memset(fir,-1,sizeof(fir));
memset(rh,-1,sizeof(rh));
for(int i=0;i<m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add1(a,b,c);
add2(b,a,c);
}
scanf("%d%d%d",&S,&T,&K);
if(S==T)K++;
dli();
printf("%d\n",astar());
return 0;
}