第K短路(A*)

给定一张N个点(编号1,2…N),M条边的有向图,求从起点S到终点T的第K短路的长度,路径允许重复经过点或边。

注意: 每条最短路中至少要包含一条边。

输入格式
第一行包含两个整数N和M。

接下来M行,每行包含三个整数A,B和L,表示点A与点B之间存在有向边,且边长为L。

最后一行包含三个整数S,T和K,分别表示起点S,终点T和第K短路。

输出格式
输出占一行,包含一个整数,表示第K短路的长度,如果第K短路不存在,则输出“-1”。

数据范围
1≤S,T≤N≤1000,
0≤M≤105,
1≤K≤1000,
1≤L≤100
输入样例:
2 2
1 2 5
2 1 4
1 2 2
输出样例:
14

A*算法,通过启发值优化出队顺序,从而减少计算量。本题的启发值是终点到各个点的距离。
当终点第k次出现时,找到k短路。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=1010,M=200010;
typedef pair<int,int> PII;
typedef pair<int,PII> PIII;
int n,m,K,tot,S,T;
int fir[N],rh[N],dis[N];
int st[N];
struct node{
	int to,w,ne;
}edge[M];
void add1(int u,int v,int w){
	edge[tot].to=v;
	edge[tot].w=w;
	edge[tot].ne=fir[u];
	fir[u]=tot++;
}
void add2(int u,int v,int w){
	edge[tot].to=v;
	edge[tot].w=w;
	edge[tot].ne=rh[u];
	rh[u]=tot++;
}
void dli(){
	priority_queue<PII,vector<PII>,greater<PII> > q;
	memset(st,false,sizeof(st));
	q.push({0,T});
	memset(dis,0x3f,sizeof(dis));
	dis[T]=0;
	while(q.size()){
		PII t=q.top();
		q.pop();
		int v=t.second;
		if(st[v])continue;
		st[v]=true;
		for(int i=rh[v];~i;i=edge[i].ne){
			int j=edge[i].to;
			int w=edge[i].w;
			if(dis[j]>dis[v]+w){
				dis[j]=dis[v]+w;
				q.push({dis[j],j});
			}
		}
	}
}
int astar(){
	priority_queue<PIII,vector<PIII>,greater<PIII> > q;
	q.push({dis[S],{0,S}});
	memset(st,0,sizeof(st));
	while(q.size()){
		PIII t=q.top();
		q.pop();
		int v=t.second.second,d=t.second.first;
		st[v]++;
		if(v==T&&st[v]==K)return d;
		for(int i=fir[v];~i;i=edge[i].ne){
			int j=edge[i].to;
			int w=edge[i].w;
			q.push({d+w+dis[j],{d+w,j}});
		}
	} 
	return -1;
}
int main(){
	scanf("%d%d",&n,&m);
	memset(fir,-1,sizeof(fir));
	memset(rh,-1,sizeof(rh));
	for(int i=0;i<m;i++){
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		add1(a,b,c);
		add2(b,a,c);
	}
	scanf("%d%d%d",&S,&T,&K);
	if(S==T)K++;
	dli();
	printf("%d\n",astar());
	return 0;
	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值