栈和队列

题目一
两个栈实现队列
使用两个栈,一个栈专门add数据,一个栈专门poll数据

public class MyQueue<T> {
    private Stack<T> addStack = new Stack<T>();
    private Stack<T> popStack = new Stack<T>();

    public MyQueue() {
    }

    public boolean add(T t) {
        return addStack.push(t) == t;
    }

    public boolean isEmpty() {
        return addStack.isEmpty() && popStack.isEmpty();
    }

    public T poll() {
        if (popStack.empty()) {
            while (!addStack.empty())
                popStack.push(addStack.pop());
        }
        return popStack.pop();
    }
}

题目二
两个队列实现栈

public class MyStack<T> {

    private Queue<T> from = new ArrayDeque<T>();
    private Queue<T> to = new ArrayDeque<T>();

    public MyStack() {}

    public T push(T t) {
        from.add(t);
        return t;
    }

    public boolean isEmpty() {
        return from.isEmpty() && to.isEmpty();
    }

    public T pop() {
        if (from.isEmpty()) {
            return null;
        }
        while (from.size() > 1) {
            to.add(from.poll());
        }
        while (!to.isEmpty()) {
            from.add(to.poll());
        }
        return from.poll();
    }

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELMSSA-ELM的具体实现代码,并通过波士顿房价数据集其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例性能对比图表,帮助读者更好地理解复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值